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1 Elementary Equations

1.1 Nomenclature
Re :Reynold’s number [-]
V :volume [m3]
d :diameter [m]
dh :hydraulic diameter [m]
p :pressure [Pa]
q :flow (volume flow) [m3/s]
qin :flow in into volume [m3/s]
t :time [s]

v :(mean-) flow velocity [m/s]
βe :effective bulk modulus

(reservoir and fluid) [Pa]
∆p :pressure variation, upstream

to downstream [Pa]
η :dynamic viscosity [Ns/m2]
ν :kinematic viscosity (= η

ρ
) [m2/s]

ρ :density [kg/m3]

1.2 The continuity equation

p, V

qin
dV

∑

qin =
dV

dt
+

V

βe

dp

dt

Flow out from the volume is counted negative.

1.3 Reynolds number

Re =
vdhρ

η
(dh hydraulic diameter)

dh =
4 × cross section area

circumference
(dh = d at cirkular crosssection)

1.4 Flow equations

For flow through fix orifices applies (see also section 3, Orifices):

Laminar flow q ∝ ∆p

Turbulent flow q ∝ √
∆p
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2 Pipe flow

2.1 Nomenclature

Re :Reynolds number [-]
d :diameter [m]
d1 :upstream diameter [m]
d2 :downstream diameter [m]
h :height [m]
h1 :upstream height [m]
h2 :downstream height [m]
g :gravitation [m/s2]
ℓ :length [m]
ℓx :distance after disturbance source [m]
ℓs :distance after disturbance source

when the flow profile is
completely developed [m]

p :pressure [Pa]
p1 :upstream pressure [Pa]
p2 :downstream pressure [Pa]
r :radius [m]
v :(mean-) flow velocity [m/s]
v1 :upstream (mean-) flow velocity [m/s]
v2 :downstream (mean-) flow velocity [m/s]
α :correction factor [-]
∆pf :pressure loss, upstream

to downstream [Pa]
ϕ :angle [◦]
λ :friction factor [-]
ρ :density [kg/m3]
ζ :single loss factor [-]
ζs :disturbance source factor [-]

2.2 Bernoullis extended equation

At stationary incompressible flow

p1 +
ρv2

1

2
+ ρgh1 = p2 +

ρv2
2

2
+ ρgh2 + ∆pf

2.3 The flow loss, ∆pf

∆pf =











































λ
ℓ

d

ρv2

2
at a straight distance

ζs

ρv2

2
after a disturbance source

ζ
ρv2

2
at a single disturbance source

2.4 The friction factor, λ

λ =



















64

Re
Re < 2300 laminar flow

0,316
4√Re

2300 < Re < 105 turbulent flow in smooth pips

2.5 Disturbance source factor, ζs

The laminar flow is completely developed at the distance ℓs after a disturbance source.

ζs ≈ 1,21 ℓs ≥ 0,06dRe (Re < 2300),

For ℓ < ℓs applies

ζs = 1,28 tanh(6,28x0,44) ℓx < 0,06dRe, see diagram in figure 1

where x =
ℓx

dRe
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1,30

1,00

0,50

0,00
10010-110-210-310-410-5

0,06

lx / d Re

ζs

Figur 1: The disturbance source factor ζs as function of
ℓx

dRe
.

The turbulant flow is completely developed at the distance ℓs after a disturbance source.

ζs ≈ 0,09 ℓs ≥ 40d (Re > 2300),

For ℓ < ℓs applies

ζs = 0,09

√

ℓx

40d
ℓx < 40d

2.6 Single loss factor, ζ

Pipe connections to reservoir

v
tank

The pipe starts at a given distance inside the reservoir

ζ =

{

1 Sharp edge

0,5 Slightly rounded edge

v
tank

Pipes in the reservoir wall

ζ = 0,5

v
tank

d

r Pipe in the reservoir wall with rounded edge

r/d 0,1 0,15 0,25 0,6

ζ 0,12 0,08 0,05 0,04

3



v

tank

dϕ

l

The pipe starts at a given distance inside the reservoir
with entrance cone: For given ℓ, optimal cone angle and
resistance factor is stated.

ℓ/d 0,1 0,15 0,25 0,6 1,0

ϕ[◦] 60–90 60–80 60–70 50–60 50–60

ζ 0,40 0,26 0,17 0,13 0,10

v

tank

dϕ

l

Pipe in reservoir wall with entrance cone: For given ℓ,
optimal cone angle and resistance factor is stated.

ℓ/d 0,1 0,15 0,25 0,6

ϕ[◦] 50–60 50–60 45–55 40–50

ζ 0,18 0,14 0,12 0,10

Area variations in the pipe

vd2ϕd1 Increase of area: The loss factor is found in the figure 2

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0
4,003,503,002,502,001,50

ϕ = 180°, dashed
ϕ = 60°

40°

30°

20°

15°
10°

5°

d2/d1

ζ

Figur 2: The loss coefficient ζ as function of the area relationship with the angle ϕ as parameter at increase of area.

vd2
d1

Decrease of area: The loss factor is described by ζ =
ζ0α, where ζ0 for different geometries is received from
section above about Pipe connection to reservoir.

According to von Mises applies when

d2/d1 0,90 0,80 0,70 0,50 0,30 0,10

α 0,19 0,37 0,51 0,76 0,91 0,99

Disturbance source factor ζs applies in a similar way

ζs = ζs0

[

1 −
(

d2

d1

)3
]

The uncompensated disturbance source factor ζs0 is received from section 2.5, Disturbance source

factor, ζs.
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Pipe bend

ϕ

r d

For pipe bend relates: ζ = ζ90
ϕ

90
where ζ90 is

d/r 0,20 0,40 0,60 0,80 1,00

ζ90 0,13 0,14 0,16 0,21 0,29

ϕ

For pipe angle gives ζ directly by

ϕ[◦] 10 20 30 40 50

ζ 0,04 0,10 0,17 0,27 0,40

ϕ[◦] 60 70 80 90

ζ 0,55 0,70 0,90 1,20

Special geometries

ζ = 0,10 ζ = 1,20
ζ = 0,50

ζ = 0,06

ζ = 0,15

45˚

ζ = 0,50 ζ = 2,5 à 3

45˚ Banjo-
nipple

ζ = 2,5 à 4
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3 Orifices

3.1 Nomenclature
A :area [m2]
A1 :upstream area [m2]
Cq :flow coefficient [-]
Re :Reynold’s number [-]
d :diameter [m]

K :constant CqA
√

2/ρ [m3/s
√

Pa]

ℓ :length [m]
p :pressure [Pa]
p1 :upstream pressure [Pa]
p2 :downstream pressure [Pa]
q :flow (volume flow) [m3/s]
ρ :density [kg/m3]

q

p1 p2
q = CqA

√

2

ρ
(p1 − p2)

3.2 The flow coefficient, Cq

Hole orifice (sharp edged)

p1 p2

A1 A

Cq = Cq(Re,
A

A1
)

If nothing else is stated Cq = 0,67 can be used.

Pipe orifice (sharp edged)

p1 p2

l

d

Laminar flow in the orifice (Re < 2300)

Cq =
1

√

1,5 + 1,28 tanh(6,28x0,44) + 64x
där x =

ℓ

dRe

The term 1,28 tanh(6,28x0,44) agrees with ζs and can be received from the diagram in
figure 1 in section Pipe flow . When x ≥ 0,06, the value 1,21 is accepted.

Turbulent flow in the orifice with 2 ≤ ℓ

d
≤ 20

Cq =











































1
√

1,46 + 0,088
ℓ

d
+

0,316
4√Re

ℓ

d

2300 ≤ Re ≤ 2 · 104

1
√

1,46 + 0,115
ℓ

d

2 · 104 ≤ Re

3.3 Series connection of turbulent orifices

p1 p2

KnK iK2K1

q

p0 pi pn
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The sum of the orifices applies:

q = K
√

p0 − pn där K =
1

√

√

√

√

n
∑

i=1

1

K2
i

Ki = CqiAi

√

2

ρ

The pressure after the j:th orifice is given by

pj = p0 − (p0 − pn)K2

j
∑

i=1

1

K2
i

3.4 Parallel connection of turbulent orifices

p1

p0

KnK iK2K1

q

q1 q2 qi qn

The sum of the orifices applies:

q = K
√

p0 − p1 där K =
n

∑

i=1

Ki Ki = CqiAi

√

2

ρ

The flow through the i:th orifice is given by

qi =
Ki

K
q
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4 Flow forces

4.1 Nomenclature
Fs :flow force [N]
d :spool diameter [m]
ℓ :length [m]
p :pressure [Pa]
p1 :upstream pressure [Pa]
p2 :downstream pressure [Pa]

q :flow (volume flow) [m3/s]
v :(mean-)flow velocity [m/s]
w :area gradient [m]
x :spool opening [m]
δ :jet angle [◦]
ρ :density [kg/m3]

4.2 Spool

Fluidelement

Fs d

v

p
p1

p2

l

δ

x

For this valve, without pressure
relief grooves, is the area gradi-
ent:

w = πd

Fs = |2Cqwx(p1 − p2) cos(δ)| + ρℓq̇

The term with absolute value is the static part of the flow force and has a closing effect.
If the spool and bushing have sharp and right angle edges and if the gap between the spool and
the bushing is small and also x ≪ d, then are:

0,62 ≤ Cq ≤ 0,67 and δ = 69◦
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5 Rotational transmissions

5.1 Nomenclature
Cv :laminar leakage losses [-]
D :displacement [m3/rev]
Min :driving torque pump [Nm]
Mut :output torque motor [Nm]
kp :Coulomb friction [-]
kv :viscous friction losses [-]
kε :displacement coefficient [-]
n :revs [rev/s]

qe :effective flow [m3/s]
∆p :pressure difference [Pa]
ε :displacement setting [-]
ηhm :hydraulic mechanical efficiency [-]
ηvol :volumetric efficiency [-]
Sub index

p pump
m motor

Pump

qep

∆p

np, Min
εp

Dp

Effective flow
qep = εpDpnpηvolp

Torque

Min =
εpDp

2π
∆p

1

ηhmp

Motor

qem

∆p

nm, Mut

εmDm

Effective flow

qem = εmDmnm

1

ηvolm

Torque

Mout =
εmDm

2π
∆pηhmm

5.2 Efficiency models

Pump

Volumetric efficiency

ηvolp = 1 − Cv

∆p

|εp|npη

Hydraulic mechanical efficiency

ηhmp =
1

1 + (kp + kv

npη

∆p
)e(kε(1 − |εp|))

Motor

Volumetric efficiency

ηvolm =
1

1 + Cv

∆p

|εm|nmη

Hydraulic mechanical efficiency

ηhmm = 1 − (kp + kv

nmη

∆p
)e(kε(1 − |εm|))
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6 Accumulators

6.1 Nomenclature
V0 :accumulator volume [m3]
n :polytrophic exponent [-]
p0 :pre-charged pressure (absolute pressure,

normally ≈ 90 % av p1) [Pa]

p1 :minimum working pressure (absolute) [Pa]
p2 :maximum working pressure (absolute) [Pa]
∆V :working volume [m3]

6.2 Calculating of the accumulator volume, V0

A. Both the charging and discharging is either adiabatic or isotherm process

V0 =

∆V
p1

p0

1 −
(

p1

p2

)

1
n

n =

{

1 isotherm process

1,4(1,5) adiabatic process

B. Isotherm charging and adiabatic discharging

V0 =

∆V
p2

p0

(

p2

p1

)

1
n

− 1

n = 1,4(1,5)
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7 Gap theory

7.1 Nomenclature

Ff :friction force [N]
Mf :friction torque [Nm]
Pf :power loss [W]
b :gap width perpendicular

to flow direction [m]
e :eccentricity [m]
h :gap height [m]

h0 mean gap height (
h1 + h2

2
) [m]

ℓ :length [m]

p :pressure [Pa]
qℓ :leakage flow [m3/s]
r :radius [m]
r1 :inner radius [m]
r2 :outer radius [m]
v :relative velocity [m/s]
∆p :pressure difference through

the gap (p1 − p0) [Pa]
γ :angle [rad]
η :dynamic viscosity [Ns/m2]
ω :angular speed [rad/s]

7.2 Plane parallel gap

p1 p0h

v
l

ql

Leakage flow relative to the fix wall

qℓ =
vbh

2
+

bh3

12η

∆p

ℓ

Friction force

Ff =
ηvbℓ

h
− bh

2
∆p

Effect losses (flow and frictional losses)

Pf =
bh3

12η

∆p2

ℓ
+

ηv2bℓ

h

7.3 Radial gap

p1

p0

h
ωr

γ

ql
When h ≪ r can the equations for plane parallel
gap be used with following substitution:

v = rω

ℓ = γr

7.4 Gap between cylindrical piston and cylinder

h1

r

e v

l

p0
p1

h2

ql

Leakage flow relative to the fix gap wall

qℓ = πvrh0 +
πrh3

0

6η

∆p

ℓ

[

1 + 1,5

(

e

h0

)2
]

Frictional force

Ff =
2πrηvℓ

h0

√

1 −
(

e

h0

)2
− πrh0∆p
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Effect losses (flow and frictional losses)

Pf =
πrh3

0

6η

∆p2

ℓ

[

1 + 1,5

(

e

h0

)2
]

+
2πrηv2ℓ

h0

√

1 −
(

e

h0

)2

7.5 Axial, annular gap

p0

ω
p1

h

r2

r1

ql

Leakage flow

qℓ =
∆pπh3

6η ln

(

r2

r1

)

Pressure as function of radius

pr = p1 − (p1 − p0)

ln

(

r

r1

)

ln

(

r2

r1

)

Friction moment

Mf =
π

2

ηω

h
(r4

2 − r4
1)

Effect losses (flow and frictional losses)

Pf =
πh3

6η

∆p2

ln

(

r2

r1

) +
π

2

ηω2

h
(r4

2 − r4
1)

12



8 Hydrostatic bearings

8.1 Nomenclature
Ae :effective area [m2]
B :bearing chamber length [m]
F :load [N]
K1 :constant [Ns]
K2 :constant [Nm2s]
L :bearing surface length [m]
ae :effective area/width [m]
f :load/width [N/m]
h :gap height [m]
ℓ :length [m]

kb :constant [Ns/m2]
k2 :constant [Nms]
p :pressure [Pa]
pb :pressure in the bearing chamber [Pa]
qs :flow through the bearing [m3/s]
qsB :flow through

the bearing/width [m2/s]
r1 :inner radius [m]
r2 :outer radius [m]
η :dynamic viscosity [Ns/m2]

8.2 Circled block

h = constant

pb

h

r2

r1

p = 0

Flow

qs =
h3

kb

pb

Load
F = Aepb

where

kb =
6η

π
ln

(

r2

r1

)

and

Ae =
π

2

(

r2
2 − r2

1

)

ln

(

r2

r1

)

Squeeze

pb

h

r2

r1

p = 0

F

h
.

Pressure

pb = −K1

h3
ḣ

Load

F = −K2

h3
ḣ

where

K1 = 3ηr2
2

[

1 −
(

r1

r2

)2
]

and

K2 =
3π

2
ηr4

2

[

1 −
(

r1

r2

)4
]

pb

h

r2

r1

p = 0

F

h
.

If pb = 0

Load

F = −K2

h3
ḣ

where

K2 =
3π

2
ηr4

2

[

1 − 2
r1

r2
+ 2

(

r1

r2

)3

−
(

r1

r2

)4
]
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8.3 Rectangular block

h = constant

pb

h

L
p = 0

f

L

B

Flow

qsB =
h3

kb

pb

Load
f = aepb

where
kb = 6ηL

and
ae = B + L

Squeeze

pb

h

L
p = 0

f

L

B

h
.

Pressure

pb = −K1

h3
ḣ

Load

f = −k2

h3
ḣ

where
K1 = 6ηL(B + L)

and

k2 = 6ηL

(

B2 + 2BL +
4

3
L2

)

pb

h

L
p = 0

f

L

B

h
.

If pb = 0

Load

f = −k2

h3
ḣ

where
k2 = 2ηL3

14



9 Hydrodynamic bearing theory

9.1 Nomenclature

U1 :velocity in x-axis surface 1 [m/s]
U2 :velocity in x-axis surface 2 [m/s]
V1 :velocity in y-axis surface 1 [m/s]
V2 :velocity in y-axis surface 2 [m/s]
T :temperature [K]
c :specific heat [kJ/kg K]
h :gap height [m]
p :pressure [Pa]
qx :flow/width unit in x-axis [m2/s]
qz :flow/width unit in z-axis [m2/s]
qr :flow/width unit in r-axis [m2/s]

qθ :flow/width unit in θ-axis [m2/s]
r :radius [m]
t :time [s]
u :flow velocity in x-axis [m/s]
w :flow velocity in z-axis [m/s]
η :dynamic viscosity [Ns/m2]
τx :shear stress in x-axis [N/m2]
τθ :shear stress in θ-axis [N/m2]
ρ :density [kg/m3]
ω1 :velocity in θ-axis surface 1 [rad/s]
ω2 :velocity in θ-axis surface 2 [rad/s]
θ :angle [rad]

9.2 Cartesian coordinate

V1 U1

V2 U2

x

y

z

Speeeds

u =
1

2η

∂p

∂x
[y(y − h)] + U1

(

1 − y

h

)

+ U2
y

h
w =

1

2η

∂p

∂z
[y(y − h)]

Flows

qx = − h3

12η

∂p

∂x
+ (U1 + U2)

h

2
qz = − h3

12η

∂p

∂z

Shear stresses

τx|y=0
= −h

2

∂p

∂x
+ η

U2 − U1

h

τx|y=h
=

h

2

∂p

∂x
+ η

U2 − U1

h

p

x

y

z

τx|y=h

τx|y=0

Reynolds equation

∂

∂x

(

ρh3

η

∂p

∂x

)

+
∂

∂z

(

ρh3

η

∂p

∂z

)

= 6(U1 − U2)
∂

∂x
(ρh) + 12ρ(V2 − V1)

Adiabatic energy equation

ρc

[

qx

∂T

∂x
+ qz

∂T

∂z
+ h

∂T

∂t

]

=
η

h
(U1 − U2)

2 +
h3

12η

[

(

∂p

∂x

)2

+

(

∂p

∂z

)2
]

9.3 Polar coordinates

rθ

w

y

u

V1ω1

V2
ω2

x

y
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Velocities

u =
1

2η

∂p

∂r
[y(y − h)] w =

1

2η

∂p

r∂θ
[y(y − h)] + rω1

(

1 − y

h

)

+ rω2
y

h

Flows

qr = − h3

12η

∂p

∂r
qθ = − h3

12η

∂p

r∂θ
+ (ω1 + ω2)

rh

2

Shear stresses

τθ|y=0
= −h

2

∂p

r∂θ
+ η

r(ω2 − ω1)

h

τθ|y=h
=

h

2

∂p

r∂θ
+ η

r(ω2 − ω1)

h

p

θ

y
τθ|y=h

τθ|y=0

Reynolds equation

∂

∂r

(

ρh3r

η

∂p

∂r

)

+
∂

r∂θ

(

ρh3

η

∂p

∂θ

)

= 6r(ω1 − ω2)
∂

∂θ
(ρh) + 12ρr(V2 − V1)

Adiabatic energy equation

ρc

[

qr

∂T

∂r
+ qθ

∂T

∂θ
+ h

∂T

∂t

]

=
r2η

h
(ω1 − ω2)

2 +
h3

12η

[

(

∂p

∂r

)2

+
1

r2

(

∂p

∂θ

)2

+
p

r

∂p

∂r

]
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10 Non-stationary flow

10.1 Nomenclature

A :line sectional area [m2]
B :constant (L0a) [kg/s m4]
CH :conc. hydr. capacitance [m5/N]
C0 :conc. hydr. capacitance/l.enh. [m4/N]
F :force [N]
LH :conc. hydr. inductance [kg/m4]
L0 :conc. hydr. inductance/l.enh. [kg/m5]
P :pressure (frequency dependent) [Pa]
Q :flow (volume flow) (frequency dependent) [m3/s]
RHℓ :conc. hydr. resistance (lam.) [Ns/m5]
RHt :conc. hydr. resistance (turb.) [Ns/m5]
R0ℓ :conc. hydr. res./l.unit. (lam.) [Ns/m6]
R0t :conc. hydr. res./l.unit. (turb.) [Ns/m6]
V1 :volume [m3]
V2 :volume [m3]
Z0 :impedance [Ns/m5]
a :speed of sound [m/s]
d :diameter [m]
ℓ :length [m]
m :mass [kg]

p :pressure [Pa]
p0 :pressure in point of operation [Pa]
p1 :upstream pressure [Pa]
p2 :downstream pressure [Pa]
ps :supply pressure [Pa]
q :flow (volume flow) [m3/s]
q0 :flow in point of operation [m3/s]
s :Laplace operator (iω) [1/s]
t :time [s]
tv :valve closing time [s]
v0 :flow velocity [m/s]

:velocity of cylinder [m/s]
α :dimensionless area [-]
βe :effective bulk modulus [Pa]
∆p :change in pressure due to pressure peek [Pa]
η :dynamic viscosity [Ns/m2]
λ :friction coefficient [-]

:parameter [1/m]
ρ :density [kg/m3]
ζ :single resistant loss [-]

10.2 Joukowskis equation

∆p = ρav0

Reduction due to valve closing time.

∆pred = ∆p
2ℓ

atv
for tv >

2ℓ

a

10.3 Retardation of cylinder with inertia load

m
FLV1

p1

V2

p2

pT = 0ps = const

v0

Pressure difference for retardation (v0 → 0)

p1max
− p2min

= v0

√

2βem

V1

10.4 Concentrated hydraulic inductance

p1 − p2 = LH

dq

dt
were LH =

ρℓ

A

10.5 Concentrated hydraulic capacitance

q1 − q2 = CH

dp

dt
were CH =

Aℓ

βe
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10.6 Concentrated hydraulic resistance

p1−p2 = RHq were RH =



























RHℓ =
128ηℓ

πd4
For laminar flow

RHt = λ
ℓ

d

ρq0

A2

For turbulent flow,
with linearization around the working
point with the flow q0

10.7 Basic differential equations on flow systems with parameter dis-
tribution in space

∂p

∂x
+ L0

∂q

∂t
+ R0q|q|m = 0

∂q

∂x
+ C0

∂p

∂t
= 0

Parameter values (per length unit)
independent of flow regime

C0 =
A

βe

L0 =
ρ

A

with laminar flow

R0ℓ =
128η

πd4
m = 0

with turbulent flow

R0t =
0,1582 η0,25 ρ0,75

d1,25 A1,75
m = 0,75

10.8 Speed of waves in pipes filled with liquid

a =
1√

L0C0

=

√

βe

ρ

Graphical solution

F-wave

F

∆p = B∆q

f-wave

f

∆p = −B∆q

were B = L0a
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Boundary conditions:

At a valve
q

q0
= α

√

p

p0

were α = dimensionless area and p0, q0 is stationary state.
At a pressure source with concentrated friction loss

p = p0 −
(

ζ + λ
ℓ

d

)

ρq2

2A2

Solution with impedance method

Transfer matrices
[

P (s, ℓ)
Q(s, ℓ)

]

=

[

cosh(λℓ) −Z0 sinh(λℓ)
− 1

Z0
sinh(λℓ) cosh(λℓ)

] [

P (s, 0)
Q(s, 0)

]

[

P (s, 0)
Q(s, 0)

]

=

[

cosh(λℓ) Z0 sinh(λℓ)
1

Z0
sinh(λℓ) cosh(λℓ)

] [

P (s, ℓ)
Q(s, ℓ)

]

[

P (s, x)
Q(s, x)

]

=

[

cosh(λx) −Z0 sinh(λx)
− 1

Z0
sinh(λx) cosh(λx)

] [

P (s, 0)
Q(s, 0)

]

[

P (s, x)
Q(s, x)

]

=

[

cosh(λ(ℓ − x)) Z0 sinh(λ(ℓ − x))
1

Z0
sinh(λ(ℓ − x)) cosh(λ(ℓ − x))

] [

P (s, ℓ)
Q(s, ℓ)

]

were λ =
√

(L0s + R0)C0s Z0 =

√

L0s + R0

C0s
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11 Pump pulsations

11.1 Nomenclature
A :the pipe’s cross-sectional area [m2]
T :wave propagation time [s]
D :pump displacement [m3/varv]
L :pipe length [m]
P :pulsation amplitude [N/m2]
V :volume [m3]
a :wave propagation speed [m/s]
d :pipe diameter [m]
fp :dim. free flow spectrum [-]
n :pump speed [rev/s]

ps :static pressure level [Pa]
z :the pump’s piston number [-]
η :dynamic viscosity [Ns/m2]
αp :dim.free cylinder volume [-]
β :bulk modulus [Pa]
ε :the pump’s displacement [-]
γ :dim.free dead volume [-]
ρ :density [kg/m3]
τ :dim.free charging time [-]
ω :angular frequency [rad/s]

11.2 System with closed end

Resonances in a pipe system with closed end are obtained at following frequency/-ies:

ω =
πk

T
k = 1, 2, 3, . . .

where

T =
L

a
a =

√

β

ρ

Figur 3: Amplitude for the resonances k = 1, 2, 3 and 4 in a system with closed end.

Flow disturbance from the pump rises at following frequencies:

ω = 2πnzj j = 1, 2, 3, . . .

Under condition that the pumps flow disturbance frequencies coincide with the pipe system’s
resonances, can the resulting pressure amplitude at this frequency be calculated with following
equation:

∣

∣

∣

∣

P

ps

∣

∣

∣

∣

max

=
2fpαpD

dL

√

ρn

π3ηzj

where

fp =
2

1 + (τj)3
αp =

1 + ε

2
+ γ

The dimensionless charging time τ is the relationship between the time you, due to the oil’s
compressibility, receive a back flow into a cylinder, and the total time period, i.e. the time
between two volumes in succession are charged. This parameter is very difficult to decide, a
typical value of τ is between 0,05 till 0,3. The higher values are referred to pumps designed for
low flow pulsations for example pumps with pressure relief grooves.
The dead volume γ has often the magnitude of 0,2, that is 20% of the effective cylinder volume.
Anti-resonances are received in a pipe system with closed end at following frequencies:

ω =
π(k + 1

2 )

T
k = 0, 1, 2, . . .

Under condition that the pump flow disturbance frequencies coincide with the pipe system’s
anti-resonances, can the resulting maximum pressure amplitude at this frequency be calculated
with following equation:

∣

∣

∣

∣

P

ps

∣

∣

∣

∣

max

=
4fpαpDn

πd2a
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Example: The above equations are used for following example. A constant pressure pump
presumed work against a closed valve. Following data is obtained:

d = 38 · 10−3 [m]
n = 25 [rev/s]
z = 9
D = 220 · 10−6 [m3/rev]
βe = 1,5 · 109 [Pa]

γ = 0,2
ε = 0
η = 0,02 [Ns/m2]
ρ = 900 [kg/m3]
τ = 0,25

Four different pipe lengths between pump and valve is analysed:

L = 1,45 m Gives resonances for j = 2, 4, 6, . . . anti-resonances for j = 1, 3, 5, . . .
L = 1,91 m Gives resonance for j = 3, 6, . . . no anti-resonance
L = 2,15 m Gives resonance for j = 4, . . . anti-resonances for j = 2, 6, . . .
L = 2,90 m Gives resonance for j = 1, 2, 3, . . . no anti-resonance

In the table below shows the obtained relationship between pulsation’s pressure amplitude and the
system’s pressure level for respective disturbance harmonic. Note, for L = 1,91 m and L = 2,15 m
can some disturbance harmonics not be analysed with the equations above, since they don’t
coincide with any of the pipe’s resonances or anti-resonances. However, the amplitudes at these
frequencies are relative small because they don’t coincide with any of the pipe’s resonances. In
the table below, these values are in parenthesis.

Relative pulsation amplitude |P/ps|

j f [Hz] L = 1,45 m L = 1,91 m L = 2,15 m L = 2,90 m

1 225 0,01 (0,01) (0,01) 0,35

2 450 0,45 (0,01) 0,00 0,22

3 675 0,00 0,22 (0,01) 0,14

4 900 0,18 (0,00) 0,12 0,09

5 1125 0,00 (0,00) (0,01) 0,05

6 1350 0,07 0,05 0,00 0,03

11.3 Systems with low end impedance (e.g. volume)

Resonances in a pipe system with low end impedance is obtained at following frequencies:

ω =
π(k + 1

2 )

T
k = 0, 1, 2, . . .

Figur 4: Amplitude for the resonances k = 0, 1, 2 and 3 for a system with low end impedance.

Anti-resonances in a pipe system with low end impedance is obtained at following frequencies:

ω =
πk

T
k = 1, 2, 3, . . .

The same equations as in previous section can be used here for calculation of maximum pressure
amplitude for the pulsations.
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If a volume, which size is not infinite, is connected to the pipe system is a dislocation of the
line’s resonances from the values in above equations obtained. This dislocation can be calculated
according to following equation

∆ω =
1

T

[

π

2
− arctan

(

V ω

Aa

)]

I.e. if a finite volume is used the resonance frequency is increased.
As example on this section, a high pressure filter is placed before the valve in the example with
the constant pressure pump. The valve is closed in this example too. The volume of the filter is
2 liters; other parameters are the same as the previous example except for the length of the line.
The following line lengths are analysed:

L = 1,47 m Gives resonance for j = 3, 5, . . . anti-resonance for j = 2, 4, 6, . . .
L = 1,87 m Gives resonance for j = 1, 4, . . . anti-resonance for j = 3, 6, . . .
L = 3,00 m Gives no resonance anti-resonance for j = 1, 2, 3, 4, 5, 6, . . .

Note, the volume is relative small and therefore the dislocation equation has to be used. When
the new resonance frequency is calculated, ”‘passningsräkning”’ has to be used. The method is
shown bellow for L = 1,47 m and k = 1.

ω =
π

(

k + 1
2

)

T
= 1350rad/s ⇒

∆ω = 430 rad/s ω = 1810 rad/s
∆ω = 340 rad/s ω = 1720 rad/s
∆ω = 350 rad/s ω = 1730 rad/s

The size of the pulsation amplitude in relation to the static system pressure is shown in the table
below. The values in parenthesis show, as in previous example, a more correct analyze of the
disturbance harmonic which can not be calculated with the equation given in this handbook.

Relative pulsation amplitude |P/ps|

j f [Hz] L = 1,47 m L = 1,87 m L = 3,00 m

1 225 (0,01) (0,54) 0,01

2 450 0,00 (0,01) 0,00

3 675 0,28 0,00 0,00

4 900 0,00 0,14 0,00

5 1125 0,11 (0,00) 0,00

6 1350 0,00 0,00 0,00
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12 Hydraulic servo systems

12.1 Nomenclature

A :piston area [m2]
Ah :control piston area (3-port valve) [m2]
Am :amplitude margin [dB]
Ar :piston area, rod side

(3-port valve) [m2]
Au :the open system’s transfer function
Bm :viscous friction coeff. (motor) [Nms/rad]
Bp :viscous friction coeff. (cylinder) [Ns/m]
Ce :external leakage flow coeff.

(cylinder/motor/pump) [m5/Ns]
Ci :internal leakage flow coeff.

(cylinder/motor/pump) [m5/Ns]
Ct :total leakage flow coeff. [m5/Ns]
Cq :leakage flow coeff. [-]
D :displacement (motor/pump) [m3/rad]
FL :external (load-) force on cylinder [N]
Gc :the closed system’s transfer function
Go :the open system’s transfer function
Greg :controller transfer function
Jt :total moment of inertia

(motor and load) [kg m2]
Kc :flowpressure coeff. (servo valve) [m5/Ns]
Kp :pressure gain (servo valve) [Pa/m]
Kq :flow gain (servo valve) [m2/s]
Kreg :control gain
Kv :loop gain
Mt :total mass (cylinder piston

and load) [kg]
Np :pump speed [rad/s]
S :stiffness
TL :external (load-)moment on motor [Nm]
U :under lap [m]
V :volume [m3]

Vh :control volume (3-port valve) [m3]
Vt :total volume [m3]
e :control error
kp :displacement gradient (pump) [m3/rad2]
p :pressure [Pa]
pc :control pressure (3-port valve) [Pa]
ps :supply pressure [Pa]
q :flow (volume flow) [m3/s]
qc :centre flow [m3/s]
s :Laplace operator (iω) [rad/s]
t :time [s]
xv :position (servo valve) [m]
xp :position (cylinder piston) [m]
w :area gradient [m]
βe :effective bulk modulus [Pa]
δh :hydraulic damping [-]
ε0 :control error (stationary)
ρ :density [kg/m3]
θm :angular position (motor) [rad]
φp :displacement angle (pump) [rad]
ϕm :phase margin [◦]
ω :angular frequency [rad/s]
ωb :bandwidth [rad/s]
ωc :crossing-out frequency [rad/s]
ωh :hydraulic eigen frequency [rad/s]
Re :real part
Im :imaginary part

Tilläggsindex
0 :working point
e :effective
m :motor
p :cylinder (piston), pump
v :valve
t :total
L :load
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12.2 Introduction

The servo technical section discusses following system:

• valve controlled cylinder

• valve controlled motor

• pump controlled cylinder

• pump controlled motor

As example in this section will a position servo of the type valve controlled cylinder in a constant
pressure system be used. In this example is the servo valve a 4-port valve with negligible dynamic
and the cylinder is symmetric. See figure 5.

M t

FL

Bp

V1 A1

p1

A2 V2

p2

pT = 0
ps = constant

xp

+
-

xp ref

xvGreg

Figur 5: Lägesservo: ventilstyrd cylinder i konstanttryckssystem.

A position servo looks, in general, out as follow:

∆FL

∆E+

-

∆Xp ref (∆Θm ref)
Controller Hydraulic system

∆Xp (∆Θm)∆Xv (∆Φp)

(∆TL)

The special case when the hydraulic system consists of a valve controlled cylinder becomes the
block diagram as:

∆FL

∆Xp

+

-∆Xv Kq

Ap

Kce

Ap
2

Vt

4βeKce
(1 + s)

Controller
∆E+

-

∆Xp ref

Hydraulic
system

1

+ 2δh + 1s

ωhωh
2

s2
s )(

12.3 The servo valve’s transfer function

All the transfer functions in this section are applied when the load spring constant K is negligible
and its viscous friction Bp and Bm respectively is small (can often be set to 0). The direction
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dependent friction coefficient Cf is neglected also in the motor case.

Valve controlled systems
The dynamic of the servo valve in the valve controlled systems is assumed to be negligible compared
to the system. Following is valid for the servo valve (see also section 12.4):

4-ports servo valve 3-ports servo valve

Kq =
∂qL

∂xv

Kq =
∂qL

∂xv

the servo valve’s flow gain

Kc = −∂qL

∂pL

Kc = −∂qL

∂pc

the servo valve’s flowpressure coefficient

Kp =
Kq

Kc

=
∂pL

∂xv

Kp =
Kq

Kc

=
∂pc

∂xv

the servo valve’s pressure gain

The load flow and load pressure through a 4-port valve controlled symmetric cylinder/motor is
defined according to following expression:

qL = (qL1 + qL2)/2 pL = p1 − p2

Pump controlled systems

The dynamic of the pump in the pump controlled systems is assumed to be negligible compared
to the system. The pump’s ideal flow is:

qp ideal = εpDpNp = kpφpNp

Linearised and Laplace transformed equations which describes the dynamic of the following hy-
draulic systems are presented in section 12.5.
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M t

FL

Bp

V1 A1

p1

A2 V2

p2

pT = 0ps = const

xp

xv

q1 q2

M t

FL

Bp

Vh Ah

pc

Ar

pT = 0ps = const

xp

xv

a. Valve controlled symmetric cylinder (4-port valve) b. Valve controlled asymmetric cylinder (3-port valve)

V1

p1

pT = 0ps = const

xv

TL Bm

θm

Dm

Jt

q1

V2

p2

q2

M t

FL

Bp

V1 A1

p1

A2

p2 = const
φ

xp

M

V1

p1

TL Bm

θm

Dm

Jt

φ

M

p2 = 
const

c. Valve controlled motor d. Pump controlled cylinder e. pump controlled motor (transmission)

Figur 6: Different types of servo systems.

12.4 Servo valve

4-port zero lapped valve

Load flow: qL = Cqwxv

√

1

ρ

(

ps −
xv

|xv|
pL

)

Centre flow: qc = 0 ideal

Zero coefficients: Kq0 = Cqw

√

ps

ρ
Kc0 = 0 ideal Kp0 = ∞ ideal

qL0 = 0 pL0 = 0 xv0 = 0
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4-port under lapped valve

Load flow: qL = Cqw

[

(U + xv)

√

ps − pL

ρ
− (U − xv)

√

ps + pL

ρ

]

for |xv| ≤ U

Centre flow: qc = 2CqwU

√

ps

ρ

Zero coefficients: Kq0 = 2Cqw

√

ps

ρ
Kc0 = CqwU

√

1

psρ
Kp0 =

2ps

U

qL0 = 0 pL0 = 0 xv0 = 0

3-port zero-lapped valve

Load flow: qL =























Cqwxv

√

2

ρ
(ps − pc) d̊a xv ≥ 0

Cqwxv

√

2

ρ
pc d̊a xv ≤ 0

Centre flow: qc = 0 ideal

Zero coefficients: Kq0 = Cqw

√

ps

ρ
Kc0 = 0 ideal Kp0 = ∞ ideal

qL0 = 0 pc0 =
ps

2
xv0 = 0

3-port under lapped valve

Load flow: qL = Cqw

[

(U + xv)

√

2(ps − pc)

ρ
− (U − xv)

√

2pc

ρ

]

for |xv| ≤ U

Centre flow: qc = CqwU

√

ps

ρ

Zero coefficients: Kq0 = 2Cqw

√

ps

ρ
Kc0 = 2CqwU

√

1

psρ
Kp0 =

ps

U

qL0 = 0 pL0 =
ps

2
xv0 = 0

12.5 The hydraulic system’s transfer function

Valve controlled symmetric cylinder with mass load (4-port valve)

∆Xp =

Kq

Ap

∆Xv − Kce

A2
p

(

1 +
Vt

4βeKce

s

)

∆FL

s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)

where ωh =



























√

4βeA
2
p

VtMt

if V1 ≈ V2

√

βeA
2
p

Mt

(

1

V1
+

1

V2

)

if V1 6= V2

δh =
Kce

Ap

√

βeMt

Vt

+
Bp

4Ap

√

Vt

βeMt

Kce = Kc + Cip +
Cep

2
Vt = V1 + V2 Ap = A1 = A2
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Valve controlled asymmetric cylinder with mass load (3-port valve)

∆Xp =

Kq

Ah

∆Xv − Kce

A2
h

(

1 +
Vh

βeKce

s

)

∆FL

s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)

where ωh =

√

βeA
2
h

VhMt

δh =
Kce

2Ah

√

βeMt

Vh

+
Bp

2Ah

√

Vh

βeMt

Kce = Kc + Cip

Valve controlled motor with moment of inertia

∆Θm =

Kq

Dm

∆Xv − Kce

D2
m

(

1 +
Vt

4βeKce

s

)

∆TL

s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)

where ωh =

√

4βeD
2
m

VtJt

δh =
Kce

Dm

√

βeJt

Vt

+
Bm

4Dm

√

Vt

βeJt

Kce = Kc + Cim +
Cem

2
Vt = V1 + V2, V1 = V2

Pump controlled cylinder with mass load

∆Xp =

kpNp

Ap

∆φp − Ct

A2
p

(

1 +
V0

βeCt

s

)

∆FL

s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)

where ωh =

√

βeA
2
p

V0Mt

δh =
Ct

2Ap

√

βeMt

V0
+

Bp

2Ap

√

V0

βeMt

V0 = V1 Ap = A1 = A2

Ct = Cit + Cet = Cip(iston) + Cip(ump) + Cep(iston) + Cep(ump)

Pump controlled motor with moment of inertia (transmission)

∆Θm =

kpNp

Dm

∆φp − Ct

D2
m

(

1 +
V0

βeCt

s

)

∆TL

s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)

where ωh =

√

βeD
2
m

V0Jt

δh =
Ct

2Dm

√

βeJt

V0
+

Bm

2Dm

√

V0

βeJt

V0 = V1 Ct = Cit + Cet = Cip + Cim + Cep + Cem

12.6 The servo stability

Feedback systems can become instable if the feedback is incorrect dimensioned. In this case we
study a position servo with proportional feedback Greg = Kreg. The open loop transfer function
become:

Au = GregGo =
Kv

s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)
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where Go is the transfer function which describes the hydraulic system’s output signal (cylinder
position) as function of the hydraulic system’s input signal (valve position) when the disturbance
signal (∆FL) is zero. The steady state loop gain Kv (also called the velocity coefficient) is:

Kv =
Kq

Ap

Kreg valve controlled symmetric cylinder (4-port valve)

Kv =
Kq

Ah

Kreg valve controlled asymmetric cylinder (3-port valve)

Kv =
Kq

Dm

Kreg valve controlled motor

Kv =
kpNp

Ap

Kreg pump controlled cylinder

Kv =
kpNp

Dm

Kreg pump controlled motor

Then, the open system’s Bode-diagram for a position servo become as figure 7.
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Figur 7: The open system’s transfer function for a position servo. Amplitude, (solid line) and phase, (dashed).

Stability condition
A stable system is obtained when

• the amplitude margin Am > 0 dB at −180◦ phase shift. If the phase intersects −180◦ more
than one time the Nyquist diagram is needed.

• the phase margin ϕm > 0◦ at 0 dB amplitude. If the amplitude curve intersects 0 dB more
than one time the Nyquist diagram is needed.

For a proportional position servo with a feedback is, for the hydraulic, the amplitude margin the
critical stability margin. It means that a stable system needs the open loop gain |Au| to be <= 1
(0 dB) when the phase shift is <= −180◦.
Figure 7 shows that the stability condition becomes

Kv

2δhωh

< 1

Stability margins
Position servo (with Bode-diagram according to figure 7) amplitude margin can be written as:

Am = −20 10 log

∣

∣

∣

∣

Kv

−2δhωh

∣

∣

∣

∣

[dB]

The following margins should be used when the control parameters shall be dimensioned in a
hydraulic system with a feedback.
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amplitude margin: Am ≈ 10 dB

phase margin: ϕm ≥ 45◦

The system’s critical working condition
Since hydraulic systems are non-linear systems, the stability margin will become different in
different working condition. From the figure for the open system’s transfer function Au the
stability margin become worst when both ωh and δh are low and steady state loop gain Kv is big.
This happened for a valve controlled symmetric cylinder when

• Cylinder piston is centered (xp = 0), i.e. V1 = V2 = Vt

2 . ωh is minimised.

• The servo valve is closed (xv = qL = 0), i.e. when Kc = Kc0. Kce and consequently δh is
minimised.

• Cylinder piston is out balanced, i.e. when pL = 0. Kq, which is proportional to
√

∆ps − ∆pL,
is maximised and consequently also Kv (proportional to Kq).

With similar discussion, the critical working condition can be decided for other systems.
In practical dimensioning, the hydraulic damping is often set to δh ≈ 0, 1.

12.7 The servo’s response – bandwidth

The bandwidth (ωb) for the closed loop system specifies how high frequency the servo’s output
signal can follow a sinusoidal input signal, when the disturbance ∆FL = 0, without:

• the gain lowers more than 3 dB (29,3 %)

• or the phase shift become more than −90◦

If the feedback is −1, the closed loop system’s transfer function for a position servo with any of
the earlier described hydraulic systems becomes:

Gc =
Au

1 + Au

=
1

1

Kvω2
h

s3 +
2δh

Kvωh

s2 +
1

Kv

s + 1

where Gc =
∆Xp

∆Xp ref
for a position servo with a valve controlled cylinder.
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Figur 8: The closed loop system’s transfer function for a position servo. Amplitude (solid) and phase (dashed).
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The closed loop system’s transfer function can also be written as

Gc =
1

(

s

ωb

+ 1

) (

s2

ω2
nc

+ 2δnc

s

ωnc

+ 1

)

If δh and Kv/ωh is small
ωnc ≈ ωh

ωb ≈ Kv

2δnc ≈ 2δh − Kv

ωh

12.8 The hydraulic system’s and the servo’s sensitivity to loading –
stiffness

Cylinder - respective motor position sensitivity to disturbance force ∆FL or a disturbance torque
∆TL is described with its stiffness S. When the stiffness is studied is all other input signals
assumed to be constant (∆Insignal = 0). The stiffness is defined as

S =
∆FL

∆Xp

or S =
∆TL

∆Θm

The hydraulic system’s transfer function can be found in section 12.5.
As example on a system without respective with a feedback, the stiffness for the valve controlled
(4-port valve) symmetric cylinder is decided. The same approach is used when the stiffness is
decided for the other hydraulic.
System without feedback
For a hydraulic system without feedback, the stiffness for the valve controlled cylinder is calculated
as

S =
∆FL

∆Xp

=
1

∆Xp

∆FL

= −
s

(

s2

ω2
h

+ 2δh

s

ωh

+ 1

)

Kce

A2
p

(

1 +
s

ωs

)

where

ωs =
4βeKce

Vt

= {if Bp isneglected} = 2δhωh

The transfer function for the stiffness is shown in figure 9.
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Figur 9: The transfer function for the stiffness for the non-feedback valve controlled cylinder.
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System with feedback
For a system with feedback with the feedback −1 and proportional gain of the control error is
following stiffness obtained for a valve controlled cylinder(∆Xp ref are set to 0).

S =
∆FL

∆Xp

=
1

∆Xp

∆FL

= −Kv

1

Kvω2
h

s3 +
2δh

Kvωh

s2 +
1

Kv

s + 1

Kce

A2
p

(

1 +
s

ωs

)

where

ωs =
4βeKce

Vt

= {if Bp isneglected} = 2δhωh

The transfer function for the stiffness in the position servo is shown in figure 10.
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Figur 10: The transfer function for the stiffness for the valve controlled cylinder with proportional feedback.

32



12.9 The servo’s steady state error

The control error e(t) in a servo system is defined as the difference between the output value and
the input value when ∆Disturbance signal = 0.
According to end value theorem, the steady state control error will be:

ε0 = lim
t→∞

e(t) = lim
s→0

s∆E(s)

where the error gets the following expression if the feedback is −1:

∆E(s) = ∆Xpref − ∆Xp = ∆Xpref
1

1 + Au

The end value theorem is only usable on an asymptotic stable system, i.e. if the output signal
has a finite limit value. For all systems can the transient be studied in the time domain (inverse
transformation, see section 12.10).

The input signal is a step
If the input signal ∆Xpref respective ∆Θmref is a step with the amplitude A becomes the input
signal A/s in frequency domain. The end value theorem becomes

ε0 = lim
s→0

s
A

s

1

1 + Au

=
A

1 + lim
s→0

Au

→ A

∞ = 0

Practical, the steady state error does never become 0, because of the components which are
included in the control loop do not have ideal characteristic.

The input signal is a ramp
If the input signal ∆Xpref respective ∆Θmref is a ramp A · t (i.e. the speed A is desired), becomes
the input signal A/s2. The steady state position error becomes

ε0 = lim
s→0

s
A

s2

1

1 + Au

=→ A

Kv

12.10 Control technical resources

Linearize

Non-linear differential equations are linearized around a working point with the first term of the
Taylor series according to

∆f
0

= ∆f(x10, x20, . . . , xn0) =

n
∑

j=1

∆xj

∂f(x1, x2, . . . , xn)

∂xj (x10,x20,...,xn0)

where the working point is assumed to have stationary working conditions.
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Laplace transformation

The following Laplace transformation table translates equations in the time domain to equations
in frequency domain (rad/s) and vice versa.

Definition L{f(t)} = F (s) =

∫ ∞

0

e−stf(t)dt

Function in time domain Transform to frequency domain

f(t) F (s)

af(t) + bg(t) a, b constants aF (s) + bG(s)

f(t − a) a ≥ 0 e−asF (s)

f(at) a > 0
1

a
F

(

s

a

)

tnf(t) n = 0, 1, 2, . . . (−1)nF (n)(s)

f(t)

t
lim

t→0+

f(t)

t
exists

∫ ∞

s

F (u)du

e−atf(t) a constant F (s + a)

f(t − a)H(t − a) a > 0, H(t)

{

0 then t < 0

1 otherwise
e−asF (s)

f ′(t) sF (s) − f(0)

f (n)(t) n = 0, 1, 2, . . . snF (s) −

n
∑

k=1

sn−kf (k−1)(0)

∫ t

0
f(u)du

F (s)

s

f(t) ∗ g(t) =

∫ t

0

f(u)g(t − u)du =

∫ t

0

g(u)f(t − u)du F (s)G(s)

Function in time domain Transform to frequency domain

tn n = 0, 1, 2, . . .
n!

sn+1
Re(s) > 0

eat a constant
1

s − a
Re(s) > Re(a)

tneat n = 0, 1, 2, . . .
n!

(s − a)n+1
Re(s) > Re(a)

cos at
s

s2 + a2
Re(s) > |Im(a)|

sin at
a

s2 + a2
Re(s) > |Im(a)|

eat cos bt
s − a

(s − a)2 + b2
Re(s) > |Im(a)|

eat sin bt
b

(s − a)2 + b2
Re(s) > |Im(a)|

t cos at
s2 − a2

(s2 + a2)2
Re(s) > |Im(a)|

2 cos at − at sin at
2s3

(s2 + a2)2
Re(s) > |Im(a)|

sin at + at cos at
2as2

(s2 + a2)2
Re(s) > |Im(a)|

sin at − at cos at
2a3

(s2 + a2)2
Re(s) > |Im(a)|
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Block diagram reduction

Reduction System Equivalent system

1. Feedback
1 GH

u yG
±

+ G
u y

H

±

2. Series connection u y
GH

u y
HG

3. Parallel connection
u y

G + H
+u y

H +

G

4. Move branch point
after a block

u y
G

u

u y
G

G
1u

5. Move branch point
in front of a block

u y

y

G
u y

G

y
G

6. Move summation point
after a block

u y

z
G

+

−

u y

z

+

−
G

G

7. Move summation point
in front of a block

u y

z

+

−
G

G
1

u y

z

+

−
G

8. Shift summation order

u
y

z

+

−

+ + u+y−z

u
y

+ + u+y−z

z

+

−

u
y

+ + u+y−z

z
−
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Bode diagram

For the transfer functions

1. G(s) =
K

sp

(

1+
s

z1

)(

1+
s

z2

)

···

(

1+
s

zm

)

(

1+
s

p1

)(

1+
s

p2

)

···

(

1+
s

pn

) (real numbers)

2. G(s) =
1

s2

ω2
0

+ 2δ0
s

ω0
+ 1

δ0 < 1 (complex numbers)

the amplitude curve becomes

1. log |G(iω)| = log K − p log |ω| + log

∣

∣

∣

∣

1 +
iω

z1

∣

∣

∣

∣

+ log

∣

∣

∣

∣

1 +
iω

z2

∣

∣

∣

∣

+ · · ·

· · · + log

∣

∣

∣

∣

1 +
iω

zm

∣

∣

∣

∣

− log

∣

∣

∣

∣

1 +
iω

p1

∣

∣

∣

∣

− log

∣

∣

∣

∣

1 +
iω

p2

∣

∣

∣

∣

− · · · − log

∣

∣

∣

∣

1 +
iω

pn

∣

∣

∣

∣

2. |G(iω)| =
1

√

(

1 − ω2

ω2
0

)2

+

(

2δ0
ω

ω0

)2

and the phase becomes

1. arg G(iω) = −p90◦ + arctan

(

ω

z1

)

+ arctan

(

ω

z2

)

+ · · · + arctan

(

ω

zm

)

−

arctan

(

ω

p1

)

− arctan

(

ω

p2

)

− · · · − arctan

(

ω

pn

)

2. arg G(iω) =



























































− arctan









2δ0
ω

ω0

1 − ω2

ω2
0









d̊a 0 ≤ ω ≤ ω0

−90◦ d̊a ω = ω0

−180◦ + arctan









2δ0
ω

ω0

ω2

ω2
0

− 1









d̊a ω > ω0

Nyquist diagram

If the transfer function is plotted direct in the complex domain, the Nyquist diagram is obtained
which is more usable than the Bode diagram. From the Bode diagram can Nyquist diagram be
constructed in following way:
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ωi

0,50

0,25

0,00

-0,25

-0,50
0,500,00-0,50-1,00-1,50

Re(Au)
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u)

|Au(iωi)| arg(Au(iωi))

Linear systems - linearized system
Under presumption that Au does not have poles in the right side are following valid:

• For a feedback system shall be stable must not the open loop system’s transfer function
enclose Re(Au) = −1 in the Nyquist diagram.

• Mnemonic rule: Pull the ”rope” downward. If Re(Au) = −1 follows - the system is instable!

Non-linear systems
With non-linear systems can a host of phenomenon occur due to occurrence of play, hysteresis in
the system etc despite the system is seemingly stable. A analyse method for investigation of the
stability is the descriptive functions where the open loop system’s transfer function is divided in
a linear part and a non-linear part according to

Au = GlinearGnon−linear

which results in the stability condition

GlinearGnon−linear = −1

By plotting Glinear and (−1/Gnon−linear) in the Nyquist diagram can the stability be investigated.
The intersection point gives in many cases the frequency and the amplitude for the self oscillation.
See other literature for determination of the non-linear transfer function.
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13 Hydraulic fluids

13.1 Nomenclature
V :volume [m3]
V1 :start volume (secant) [m3]
V2 :end volume (secant) [m3]
Vc :volume (reservoir) [m3]
Vg :volume (gas) [m3]
Vℓ :volume (fluid) [m3]
Vt :total volume [m3]
p :absolute pressure [Pa]
p0 :absolute pressure at NTP (= 0,1 MPa) [Pa]
p1 :start pressure (secant) [Pa]
p2 :end pressure (secant) [Pa]
u :flow velocity in x-led [m/s]
n :polytrophic exponent [-]
ys :correction coefficient (secant) [-]
yt :correction coefficient (tangent) [-]

x0 :amount of air in the oil
(gas volume/total volume at
normal state, NTP) [-]

ν :kinematic viscosity [m2/s]
ρ :density [kg/m3]
βe :effective bulk modulus [Pa]
βc :bulk modulus (reservoir) [Pa]
βg :bulk modulus (gas) [Pa]
βℓ :bulk modulus (fluid) [Pa]
βt :bulk modulus with no air in the oil (tangent) [Pa]
βs :bulk modulus with no air in the olja (secant) [Pa]
βbt :bulk modulus with air in the oil (tangent) [Pa]
βbs :bulk modulus with air in the oil (secant) [Pa]
τ :skjuvspänning [N/m2]
η :dynamic viscosity [Ns/m2]

Definition, η
dynamic viscosity
for Newton fluid

τ = η
du

dy

y

x

u(y)

Kinematic viscosity ν =
η

ρ

Bulk modulus for oil with no air

Tangent value, is used at small changes

βt = −V
dp

dV

βt is shown in figure 11. Most of the normal hydraulic oils have bulk modulus between the Naften
based oil and Paraffin based oil.
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Figur 11: Tangent value of the bulk modulus for oil with no air.
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Secant value, is used at big changes from normal pressure
(p1 = 0, V1) till (p2, V2)

βs = −V1
p2

V2 − V1

βs is shown in figure 12. Most of the normal hydraulic oils have bulk modulus between the Naften
base oil and Paraffin base oil.
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Figur 12: Secant value of bulk modulus for oil with no air.

Bulk modulus for oil with air

Tangent value
Simplified model and can be used when x0 ≤ 0,1.

βbt = ytβt där yt =
1

1 +
x0

np

βt

(1 − x0)

(

p0

p

)

1
n

yt is shown in figure 13 for different amount of air in the oil, x0, at the special case:
polytrophic exponent n = 1,4
βt = 1500 + 7,5∆p [MPa]
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Figur 13: Correction for the air included in oil, tangent value.
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Secant value
Simplified model and can be used when x0 ≤ 0,1.

βbs = ysβs där ys =
1

1 − x0 +
βsx0

(p − p0)



1 −
(

p0

p

)

1
n





ys is shown in figure 14 for different amount of air in the oil, x0, at the special case:
polytropexponent n = 1,4
βs = 1500 + 3,7∆p [MPa]
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Figur 14: Correction for the air included in oil, secant value.

Effective bulk modulus, βe

The effective bulk modulus, βe,
is defined as

1

βe

=
∆Vt

Vt∆p

Total initial volume: Vt = Vℓ + Vg

At compression: ∆Vt = −∆Vℓ − ∆Vg + ∆Vc

where ℓ, g och c refer to fluid, gas respective reservoir.

In general, the bulk modulus is calculated as (secant
value)

1

βe

=
Vg

Vt

(

1

βg

)

+
Vℓ

Vt

(

1

βℓ

)

+
1

βc

For oil with no air:

1

βe

=
1

βℓ

+
1

βc

Gas

−∆Vg
∆V t

∆Vc

Fluid

Gas

Vg

V lFluid
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14 Pneumatic

14.1 Nomenclature
A0 :min. cross-section area of the orifice [m2]
A12 :effective entrance area [m2]
A23 :effective exit area [m2]
Ae :effective orifice area (CdA0) [m2]
Cd :flow coefficient [-]
Ci :C-value for component i [-]
Cs :C-value for system [-]

K :constant [
√

kgK/J]

Kt :temperature correction (
√

T0/T1) [-]

N :parameter [-]
R :gas constant (287 for air) [J/kg K]
T0 :reference temperature (NTP) [K]
T1 :upstream total temperature [K]
T3 :downstream total temperature [K]
Tv :total temperature i volume [K]

b :critical pressure ratio [-]
bi :b-value for component i [-]
bs :b-value for system [-]
ṁ :mass flow [kg/s]
p1 :upstream total absolute pressure

(= static + dynamic pressure) [Pa]
p2 :downstream static absolute pressure [Pa]
p3 :atmospheric pressure (0,1 MPa) [Pa]
pv :atmospheric pressure in volume [Pa]
q :volume flow [m3/s]
t :time [s]
α :parameter [-]
κ :isentropic exponent [-]
ω :parameter [-]

τ :dimension free time (=
√

RT At
V

) [-]

14.2 Stream through nozzle

According to the thermodynamic, the mass flow ṁ through a nozzle can be written as

ṁ =
p1CdA0KN√

T1

where K =

√

√

√

√

√
κ

R

(

2

κ + 1

)

κ + 1

κ − 1

N =



















































1 for
p2

p1
≤

(

p2

p1

)∗

√

√

√

√

√

√

√

√

√

√

(

p2

p1

)

2

κ
−

(

p2

p1

)

κ + 1

κ

κ − 1

2

(

2

κ + 1

)

κ + 1

κ − 1

for
p2

p1
>

(

p2

p1

)∗

critical pressure ratio: b =

(

p2

p1

)∗

=

(

2

κ + 1

)

κ

κ − 1

With b- and C-value hold for volume flow q following expression at NTP

q = p1KtCω

ω =































1 for
p2

p1
≤ b

√

√

√

√

√

√

1 −







p2

p1
− b

1 − b







2

for
p2

p1
> b
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14.3 Series connection of pneumatic components

bn

Cn

pn+1

qn+1

p1

q1

b1

C1

p2

q2

b2

C2

p3

q3

bi

Ci

T1
bs ,Cs

Figur 15: Series connection of pneumatic components with b- and C-values

On condition that

• every component can be described with q = p1KtCω

• b- and C-value is known for every component

• absolute static pressure after one component is equal to the absolute total pressure before
the next component

• the entrance temperature holds for all system

• every component have the same mass flow (q1 = q2 = · · · = qn)

qs = p1KtCsω med Kt =

√

T0

T1

ω =































1 för
pn+1

p1
≤ bs

√

√

√

√

√

√

1 −







pn+1

p1
− bs

1 − bs







2

för
pn+1

p1
> bs

Case A If b- and C-value is about the same

1

C3
s

=

n
∑

i=1

1

C3
i

bs = 1 − C2
s

n
∑

i=1

1 − bi

C2
i

Case B In cases of, the components’ characteristics show large divergence,
the components sequence have to be considered (gradual reduction)

Calculation sequence:

α12 =
C1

C2b1

α12 < 1 Critical pressure drop first over component 1, and because of
the decrease of pressure ratio as well in component 2.

α12 = 1 Both components is critical at the same time

α12 > 1 Critical pressure drop only in component 2

C12 =































C1 for α12 ≤ 1

C2α12

α12b1 + (1 − b1)

√

α2
12 +

(

1 − b1

b1

)2

− 1

α2
12 +

(

1 − b1

b1

)2 for α12 > 1
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b12 = 1 − C2
12

(

1 − b1

C2
1

+
1 − b2

C2
2

)

{

α13 =
C12

C3b12
osv . . .

}

14.4 Parallel connected pneumatic components
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Figur 16: Parallel connected pneumatic components with b- and C-values

qs = p1KtCsω med Kt =

√
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For systems with the same further line (see figure 16) relates to

Cs =
n

∑

i=1

Ci

Cs√
1 − bs

=
n

∑

i=1

Ci√
1 − bi

14.5 Parallel- and series connected pneumatic components

For system with separate further lines are dealt as series links, after which the total flow is obtained
as the sum of all the partial flows in every series links.

14.6 Filling and emptying of volumes

Assumptions

• isotherm process (T = T1 = Tv = T3)

• stationary conditions

(

dT

dt
= 0,

dAe

dt
= 0,

dV

dt
= 0,

dp1

dt
= 0,

dp3

dt
= 0

)

• p3 = atmospheric pressure

• p1 and pv are absolute pressure

• A12 and A23 are effective areas
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Charging a volume

The diagrams below shows pv as a function of dimensionless time τ =

√
RTA12t

V
with the area

relation of
A23

A12
as parameter.
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(a) The downstream pressure p3 = 0,1 MPa absolute.
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Figur 17: Charging of the volume V .
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Discharging a volume

The diagrams below shows pv as a function of dimensionless time τ =

√
RTA23t

V
with the area

relation of
A12

A23
as parameter.
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(a) The downstream pressure p3 = 0,1 MPa absolute.
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(d) The upstream pressure p1 = 2,1 MPa (absolute)

Figur 18: Discharging the volume V .

For both charging and discharging a volume

If p1 is between the assumed levels in the diagrams can the time be calculated with linear inter-
polation of the two diagram according to the equation below ((p1 in MPa)).

t =







t5 +
p1 − 0,6

0,5
(t10 − t5) for 0,6 ≤ p1 ≤ 1,1 MPa

t10 + (p1 − 1,1)(t20 − t10) for 1,1 ≤ p1 ≤ 2,1 MPa
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Appendix A

Symbols for hydraulic diagrams

Correspond to the international standard CETOP RP3 and the Swedish SMS 712. It is specified
when the two standards differ.
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General symbols

1) 2)

Flow direction
1)Hydraulic
2)Pneumatic

Variability

Joined compo-
nents

Components belonging to one assembly or
functional group

Mechanical elements

D

D<5E

Shaft, lever arm,
bar, rod piston Rod piston can be drawn with a single line

Rotational shaft One respective two rotational directions

Spring

Pipes and connections

E

L<10E

E

L<10E

Line

Solid line = main pipe
Dotted line with L>10E = control pipe
Dotted line with l<5E = drain pipe
(E = line width)

Flexible pipe,
hose The symbol is used mainly for movable parts

d

Pipe connection d = 5E (E = line width)

1) 2) 3) Air-drain and
air outlet

1) Air-drain for hydraulic pipe
2) Air outlet without possibility of connection
3) Air outlet with possibility of connection

1) 2)
Connection

1) Plugged connection
2) Connection with connected pipe. (Nor-
mally is the connection plugged.)

1) 2)

3) 4)
Quick connect
fittings

Enable connection of pipes without tools.
1) Quick connect fitting without valve (inter-
connected)
2) Quick connect fitting with valve (intercon-
nected)
3) Half of a quick connect fitting without valve
4) Half of a quick connect fitting with valve

Rotatable con-
nection Can rotate during operation, with one line
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Control systems

1) 2)

3) 4) Manual controls

1) General symbol
2) Control with push button
3) Control with lever arm
4) Control with pedal

1) 2) 3)
Mechanical con-
trols

1) Plunge
2) Roll
3) Spring

1) 2) 3) M Electric controls

1) Electromagnetic with one winding
2) Electromagnetic with two winding (active
in two directions)
3) Control with electric motor

Pressure control
Pressure control through pressure rise respec-
tive pressure reduction

Pressure control Direct control through differential pressure

Indirect pres-
sure control

Simplified symbol for pre-controlled valve.
Control at pressure rise respective pressure re-
duction.

Internal control
line Control line is inside the valve.

1) 2)
Combined con-
trols

1) Control with electromagnetic controlled
pre-control valve.
2) Control with electromagnetic or pre-control
valve.

Pumps and Motors

1) 2)

Pump with
constant dis-
placement

1) One flow direction
2) Two flow directions

1) 2)

Pump with
variable dis-
placement

1) One flow direction
2) Two flow directions
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1) 2)

Example of con-
trols for variable
pump

1) Manual control
2) Pressure control via control valve

Compressor
with one flow
direction The two distorted lines is not included in SMS

Vacuum pump

1) 2)

Motor with
constant dis-
placement

1) One flow direction
2) Two flow directions

1) 2)

Pneumatic
motor with
constant dis-
placement

1) One flow direction
2) Two flow directions

1) 2)

Motor with
variable dis-
placement

1) One flow direction
2) Two flow directions

Motor with
limited angle of
twist

1) 2) 3)

Pump/motor
with constant
displacement

Component working as pump/motor at:
1) Shifted flow direction, maintained pressure
side.
2) Maintained flow direction, shifted pressure
side.
3) Shifted flow direction and pressure side.

Hydrostatic
gear

Pump and motor together as one unit without
external pipe system.

50



Cylinders

Single-acting
cylinder

The fluid pressure exercises a force in one di-
rection only.

Single-acting
cylinder

The fluid pressure exercises a force in one di-
rection only and the return stroke by return
spring.

Double-acting
cylinder

The fluid operates alternatively in both direc-
tions.

Double-acting
symmetric
cylinder

Differential
cylinder

Double-acting cylinder where the area differ-
ent between the both sides are essential for the
function.

1)

2)

Cylinder with
cushion

1) Single acting cushion.
2) Double acting cushion.

1)

2)

Cylinder with
variable cushion

1) Single acting cushion.
2) Double acting cushion.

1)

2) x y

x y x y

x y

Pressure inten-
sifiers

Unit converting a pressure X into a higher
pressure Y.
1) For one medium (air).
2) For two mediums (air and oil).

Air-oil actuators
Unit converting a pneumatic pressure into an
equal hydraulic pressure.
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Directional control valves
Opening and closing of one or more flow paths. Symbols with
several squares. The external flow lines are normally situated
at the square which indicates the neutral or normal position.
Other positions can be shown by displacement of the squares
until the external flow lines are situated at the corresponding
square.

1)

3)

5)

2)

4)

6)

7)

Example of
squares with
different flow
paths.

1) Two pipe connections and free throughflow.
2) Two connections that are closed.
3) 4) Four connections and free throughflow.
5) Four connections where all are tied to each
other.
6) Four connections were two are closed and
two are tied together.
7) Five connections were one is closed.

1)

2)

3)

Non-throttling
directional
control valve

Several service positions each shown by a
square;
1) Valve with two distinct positions.
2) Valve with three distinct positions.
3) Valve with two distinct positions (outer
squares), but between the distinct positions
the valve passes a central position with
essential function.

1)

2)
2/2 directional
control valve

First number in the description denotes the
number of ports, the second the number of
positions. Pilot ports are not included. Con-
trol e.g.
1) manual
2)by pressure against return spring (unloading
valve).

1)

2)

3/2 directional
control valve

1) Control by pressure from both ends.
2) Control by solenoid against return spring,
with transient intermediate position.

Electro hy-
draulic servo
valve with pilot
and mechanical
feedback.
4/2 directional
control valve

Combined with solenoid operated pilot valve
with return spring. Representation
1) detailed
2) simplified.

5/2 directional
valve Control by pressure in both directions.
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1)

2)

Throttling di-
rectional control
valve

Two end positions and intermediate throttling
positions.
1) Shows only the end positions.
2) Shows the end positions and the centre
(neutral) position.
All valve symbols have parallel lines outside
the envelope.

One throttling
orifice (2 ports)

Tracer valve; plunger operated against return
spring.

Two throttling
orifices (3 ports)

Pressure controlled against return spring in
two directions.

Four throttling
orifices (4 ports)

Tracer valve; plunger operated against return
spring.

Single stage
electro-
hydraulic servo
valve

Amplification of infinitely variable electrical
input signals transformed onto hydraulic out-
put; without pilot operation.

Two stage
electro-
hydraulic
servo valve
with mechanical
feedback

Two stage
electro-
hydraulic
servo valve
with hydraulic
feedback

Check valves or non-return valves

1) 2) Check valve

1) without, 2) with back pressure. Opening
if inlet pressure is 1) higher than the outlet
pressure, 2) higher than the outlet pressure
plus spring pressure.

1) 2)
Pilot controlled
check valve

Pilot controlled
1) Opening can be prevented
2) Closing can be prevented

Shuttle valve

The inlet under pressure is automatically con-
nected to the common outlet and the other
inlet is closed.
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One way restric-
tor

Valve which allows free flow in one direction
and restricted flow in the other direction.

Quick exhaust
valve

When pressure falls at the inlet connection,
the outlet is automatically opened to exhaust.

Pressure control valves

1)

3)

2)

Pressure control
valves

Automatic control of pressure;
1) One throttling orifice, normally closed.
2) One throttling orifice, normally open.
3) Two throttling orifices. Arrows with or
without tails.
Pictures in the right column are not according
to SMS standard.

Pressure relief
valve

Inlet pressure is controlled by opening the ex-
haust port to the reservoir or the atmosphere
against an opposing force. The left valve has
fixed preloaded spring force, the right has vari-
able.

Pilot controlled
pressure relief
valve

Inlet pressure is controlled by spring force or
by a value determined by the pressure in a
outer pilot port. In the left figure pilot pres-
sure acts against the spring force. In the right
figure it acts together with the spring force.

Proportioning
pressure relief
valve

Inlet pressure is limited to a value propor-
tional to the pilot pressure.

Sequence valve

When the inlet pressure exceeds the opposing
force of the spring, the valve opens permitting
flow through the outlet port.

1)

3)2) Pressure regula-
tor

With varying inlet pressure the outlet pressure
remains substantially constant. Inlet pressure
must however remain higher than the selected
outlet pressure.
1) without,
2) with unloading device.
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Pilot controlled
pressure regula-
tor

Outlet port pressure proportional to pilot
pressure.

Differential
pressure regula-
tor

The outlet pressure is reduced by a fixed
amount with regard to the inlet pressure.

Proportioning
pressure regula-
tor

The outlet pressure is reduced by a fixed ratio
with regard to the inlet pressure.

Flow control valves

1)

3)

2)

Variable flow
control valve

Manual controlled throttle valve.
1) Detailed
2) Simplified
Mechanical controlled throttle valve.
3) Mechanical controlled against spring (brak-
ing valve).

1) 2)
Series flow con-
trol valve

Regulator with fixed setting, without exceed-
ing oil bleed off.
1) Detailed
2) Simplified

1) 2)

By-pass flow
control valve

Regulator with fixed setting, with exceeding
oil bleed off.
1) Detailed
2) Simplified

Flow divider
The flow is divided into two fixed flows sub-
stantially independent of pressure variations.

Shut-off valve Simplified symbol.
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Components for cooling, filtering, energy storage etc.

1) 2) 3)

Orifices

Acc. CETOP:
1) Viscosity dependent (pipe orifice)
2) 1) Viscosity dependent (sharp edged)
Acc. SMS:
1) General symbol
3) Viscosity dependent (pipe orifice)

1) 2) 3) 4)
Reservoirs

1),2), and 4) Reservoirs with atmospheric
pressure.
3) Pressured reservoir. 1),3) The flow line flow
into the reservoir above the the fluid level. 2)
The flow line flow into the reservoir below the
the fluid level. 4) The flow line flow connected
under the reservoir.

1) 2)
Accumulators

1) Hydraulic, the fluid is subjected to pressure
from a spring, weight or gas (air, nitrogen, etc)
2) pneumatic (receiver)

Filter; strainer

1) 2)
Water trap

1) Manual control of draining, 2) automatic
draining.

1) 2)
Filter with wa-
ter trap

The apparatus is a combination of filter and
water trap..

Desiccator Air drying by chemicals.

Lubricator

For lubrication of apparatus small quantities
of oil are added to the air which is flowing
through the lubricator.

1)

2)

Maintenance
unit

Apparatus comprising filter, pressure regula-
tor and lubricator assembled as a unit, 1) de-
tailed 2) simplified.
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Temperature
controller

The fluid temperature is controlled between
two predetermined values. The arrows indi-
cate both heat introduction and dissipation.

1) 2)
Cooler

1) Without 2) with indication of the flow lines
of the coolant. The arrows in the square indi-
cate the heat dissipation.

Heater The arrows indicate introduction of heat.

Silencer

Energy sources

Pressure source

Μ Electric motor

1) 2) Μ
Combustion en-
gine

1) According to CETOP
2) According to SMS

Measurement equipments

Manometer
(Pressure trans-
ducer)

Thermometer The symbol can be placed arbitrarily.

Flow rate meter Measure flow (volume per time unit)

Σ
Integrated flow
meter Measure the total volume which is passed.

Pressure switch The symbol shows a switching contact.
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