IR 4.0 & Innovation Champion Through the Enhancement of Entrepreneurship Education Policy

BY: AINI SUZANA ARIFFIN (PhD)
ainisuzana@utm.my
17th OCTOBER 2018
CONTENTS

1. Introduction - IR 4.0
2. Innovation as the Backbone of Smart Industry 4.0
3. Opportunities & Risk of IR 4.0 in Economy & Society
4. Competitive Position of Malaysia For Transit Towards Smart Manufacturing 4.0
5. National Industry 4.0 Policy Framework (MY-i4.0)
 5.1 Vision & Objectives – MY-i4.0
6. Initiative: Formation of Entrepreneurship Education Policy
 6.1 Youth Entrepreneurs as Global Player: Research Findings – April 2017
7. The Way Forward: Entrepreneurship Education Policy
8. Conclusion
1. Introduction

IR 4.0 – A Necessary Evil

• The high pace and impact of emerging technologies have brought the world on the threshold of a new revolution.

• The lines between biological, physical and technological boarders are being blurred.

• No nation can afford to take a backseat in this transition in order to attain a competitive leverage in international business (WEF, 2018).
1.1 Industry Revolution

Revolutions do not occur overnight, but it is an outcome of continuous evolution.

THE FOUR STAGES OF INDUSTRIAL REVOLUTION
Reaching for tomorrow: from the mechanical loom, to production-line manufacturing and programmable logic controllers, to smart factories.

1st INDUSTRIAL REVOLUTION
Introduction of mechanical production facilities powered by water and steam

2nd INDUSTRIAL REVOLUTION
Early 20th century
Industry 2.0
Use of electronics and IT to further automate production

3rd INDUSTRIAL REVOLUTION
Early 1970s
Industry 3.0
Use of cyber-physical systems

4th INDUSTRIAL REVOLUTION
Today
Industry 4.0
Use of cyber-physical systems
1.2 Founder & Origin of IR 4.0

- IR 4.0 takes the automation of manufacturing processes to a new level by introducing customized and flexible mass production technologies.

- Professor Klaus Schwab, Founder and Executive Chairman of the World Economic Forum.

- We are at the beginning of a revolution that is fundamentally changing the way we live, work and relate to one another, which he explores in his new book, The Fourth Industrial Revolution.

- He is regarded as the founder of 4th Industrial Revolution (IR 4.0)
1.3 Impacts of IR 4.0

- IR 4.0 will impact all disciplines, economies and industries, but none more so than production:
 - on the **demand** side, it will “enlarge the pie” and **create new value and profit** pools
 - on the **supply-side**, technologies will unlock industry-wide **efficiencies and productivity**

- **Smart Assistance Systems** will enable people to **combine their work, private lives and continuing professional development** more effectively.

- An enabler of **more creative, smarter and more connected** world in which we are free to enjoy creative thinking and **innovative**.
2. Innovation as the Backbone of Smart Industry 4.0

• The term “Industry 4.0” describes a vision of “intelligently” automated factories combined with Smart Human Resource 4.0 who are equipped with innovative technical competency & skills.

• The state-of-the-art information and communication technologies are either replacing traditional industrial processes or are being combined with them, thus changing the production areas.

• Technological innovation, such as real time, adaptive and decentralized Cyber-Physical Production Systems (CPPS) are most significant in attaining a digital transition towards Smart Industry 4.0.

• Soft skills of workforce will be more important e.g. ability to deal with constant changes and completely new tasks, problem-solving skills, failure analysis. Rather than hard skills which will become obsolete with the emergence of new technologies.
2.1 Key Innovations

- Application of information and communication technology (ICT) to digitize information and integrate systems
- **Cyber-physical systems** that use ICTs to monitor and control physical processes, embedded sensors, intelligent robots, (3D printing) devices
- **Network communications** including wireless and internet technologies that serve to link machines (manufacturing plant-- work products, systems and people, suppliers and distributors
- **Simulation, modelling and virtualization** in the design of products
- **Collection of vast quantities of data, analysis and exploitation** through big data analysis and cloud computing
2.2 Components & Impact of IR 4.0

The efficiency gain of automation will be large enough that, in a few short years, the adoption of given technologies will be a matter of survival for many countries.

Components of IR 4.0 Responsible For The Transformation
Source (Hobcraft, 2018)
3. Opportunities & Risk of IR.40 in Economy & Society

3.1 OPPORTUNITIES – NEW INDUSTRIES
3.2. Area of Risk

1. Productivity & Competitiveness
 Value added; machine engineering generate – €32 billion in 2025

2. Employment
 - How many new jobs created?
 - Existing jobs destroyed
 - Stabilization of employment?

3. Qualification
 Technological change
 - New requirement of skills (E.g.
 Abstract thinking, information management, documentation, reading skills)

4. Complex of Big Data/Data Security
 Cyber attack may damage
 - Relationship between countries
 - SME; Knowledge/data developed could be misappropriate
3.3 What Next?
IR 5.0

- Involves a human’s ability to customize and personalize a product at a mass scale with **advanced robotic capabilities**.

- Involve around the interactions between man and machine. **Greater collaboration** between the two will be better equipped to work along with human intelligence.

- Employee will need to be skilled to provide value-added tasks in production - wide demand for greater customization and personalization for mass production.

- What Role Will Industrial Robots Play in Industry 5.0? Help close the design loop. Through efficiently automating - the entire production process, **humans are left free to create and innovate without having to worry about production constraints**.
1760 AD – 1840 AD in England

- 1800s-1900s in France Germany

- 1840s -1920s in United States

- 1950s-in 2010s in Germany, EUs, Japan, Korea, Australia
E.g.
Our fridges will order milk when we run out
Our cars will drive us to work
Our warehouses will manage their inventory.
4. Competitive Position of Malaysia for Transit Towards Smart Manufacturing 4.0

• The Readiness for the Future of Production Report 2018, by WEF, highlights that Malaysia is in the “Leader” quadrant.

• Malaysia is “positioned well for the future” to take the transition towards Smart Manufacturing 4.0.

• The Global Manufacturing Competitiveness Index 2016 ranked Malaysia at 17th place among 40 countries.

• On the technology and innovation side, the Global Innovation Index 2017 ranked Malaysia at 37th globally among 127 countries.

• In Asia, it stood as one of the top 5 Asia’s economies and positioned itself next to Singapore in ASEAN.

2015- MIMOS & China’s Shanghai’s Changda Invst Mgmt – L aunced National IOT Plan
The Malaysia government has put in place the National Industry 4.0 Policy Framework (MY-i4.0), that provides a comprehensive transformation agenda for the manufacturing sector.

MY-i4.0

The Malaysia government has put in place the National Industry 4.0 Policy Framework (MY-i4.0), that provides a comprehensive transformation agenda for the manufacturing sector.

Industrial Sector – 2015

- **37 % GDP**
- **38 % Employment**
- From Electronics, Automotive, & Construction
5.1 Vision & Objectives of MY-i4.0

- Attract stakeholders to Industry 4.0 technologies & processes and further increase Malaysia’s attractiveness as a preferred manufacturing location
- Create the right ecosystem for Industry 4.0 to be adopted and align existing and future development initiatives
- Transform Malaysia’s industry capabilities in both a holistic and an accelerated manner

Targeted outcomes:
- Higher manufacturing sector contribution
- More high value-added products
- Continuing FDI
Youth Entrepreneurs as Global Player - Research Findings - April 2017

A survey on the perceived Quality of Malaysian graduates by 200 top employers highlighted that communication skill, creativity, critical thinking, analytical skill, problem solving and ability to work independently as among the skill deficits in fresh graduates affecting their employability. (TalentCorp, 2014).
Youth Entrepreneurs as Global Player - Research Findings

Barriers & Challenges Faced by Youth Entrepreneurs

Survey; ASA et. al 2017

Innovation & Entrepreneurial Capability

www.utm.my

innovative ● entrepreneurial ● global
Entrepreneurship education was first introduced to STEM students at Malaysia’s public universities between 2000-2010 for its economic benefits.

The move is respond to the Asian financial crisis 1996/1997, the world economic recession 2010/2011, slow growth of the industrial sector, fluctuation in international trade cycles, competitive globalised economy and divergent business environment.

The economic value of supporting the development of entrepreneurship has been seen by policy makers as making a real and sustainable investment in the future prosperity of the country. (Ahmad and Buchanan 2015)
Subsequently, the **Industrial Revolution 4.0 (IR 4.0)** has given a **new impetus to educational transformation** with far greater needs to produce graduates with strong entrepreneurial mind and skills of higher creativity, innovations, competitiveness and agility.

This has necessitated profound changes to be made in major aspects of **education including entrepreneurship education’s policy content**, pedagogy, delivery, and structure/management of Education 4.0 which are shaped by innovations and will indeed have to train students to **produce innovations** (Abdul Haseeb, 2018; Sani 2018; Devezas et. al 2016)
In line with the **Entrepreneurship Action Plan of Higher Education Institutions (2016-2020)**, the ministry targets 80% of students to have entrepreneurial exposure while studying, 9% to register a business during studies and 3.5% of graduates to choose entrepreneurship as a career.

One of the challenges of Industry 4.0 is to have the industry and the **academia act as one to fulfil industry and graduate needs**. The role of higher education institutions is to prepare students for the changes brought by Industry 4.0.
However, a substantial number of higher education institutions are still facing difficulties in implementing entrepreneurship education effectively.

Major issues identified are the commitment towards entrepreneurship education by both educators and students, lacking of proper entrepreneurship training for educators as well as insufficient educators’ qualification and curriculum exposures (Rahim et al. 2015) particularly in producing professional practice workforce.
This in line with the **Malaysia Education Blueprint (Higher Education) 2015 - 2025**, which comprises 10 thrusts including to producing entrepreneurial graduates who are holistic and balanced.

National Industry 4.0 Policy Framework (My-i4.0), that provides a comprehensive transformation agenda for the manufacturing sector in 2030.

Visions

Total solution provider for advanced technology

Rationale

Create a holistic ecosystem that propels Malaysia’s transformation and helps SMEs break out and scale up

Key enables:

Knowledge Creation & Entrepreneurship
7.1 RESEARCH OBJECTIVE

Therefore, the objective of this research is;

To formulate and enhance existing policies related to entrepreneurship education through;
- evaluate the current progress of the entrepreneurship education in STEM and TVET programs
- addressing the needs for a robust yet agile entrepreneurship education under the banner of "fluid and organic“ holistic curriculum
- Curriculum structure & delivery
- Assessment, monitoring and quality.
7.2 RESEARCH CONNECTIVITY

DIAGRAM/WORKFLOW

1. Entrepreneurship Education Policy

2. Fluid and Organic Entrepreneurship Curriculum

3. Curriculum Delivery for Entrepreneurship Education

4. Entrepreneurship Quality within Industrial Professional Practice Workforce

5. Assessment and Evaluation of Entrepreneurship Curriculum
8. CONCLUSION

- Malaysia is recognised as **one of the 25 top global leading economies** to reap the potential benefits from the 4IR. (MITI’s Minister -2018.)

- The overarching strategy to **“Attract, Create and Transform (ACT)”** as propounded in MITI’s **“National Industry 4.0 Policy Framework or “My-I4.0”** will help to ensure Malaysia maintaining its long-term competitive advantage.

- The future is very promising and certainly there is value in Industry 4.0, but each company has to decide what it wants and find the most cost effective route to get there.
• Therefore, all major manufacturing stakeholders from the government, industry and academia should **seriously collaborate** in IR 4.0 implementation and putting in place the new manufacturing ecosystem.

• The **readiness is depending on the each industry sector development and advancement** in technology development, adoption, technological innovation, trade capabilities - exports. As well as government support in providing sufficient infrastructure, facilities and intervention in each sector.
Reference

- - Disruption Hub. Retrieved from https://disruptionhub.com/innovation-industry-4-0/
Thank You