

Striving for Excellence: Experience Publishing in Nature Materials (IF 38.9)

Dr. Abdul Rahman Mohmad

Institute of Microengineering & Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia

armohmad@ukm.edu.my

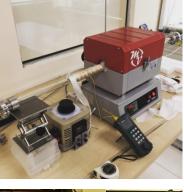
IMEN UKM

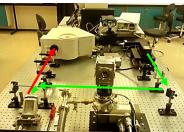
Research themes:

- MEMS/NEMS & Nanoelectronics •
- **Organic & Printed Electronics** ullet
- Photonics & Nanophotonics ٠
- **Microelectronics Semiconductor** • Packaging
- Micro & Nanoelectronics System •

BERITA SUKAN DUNIA HIBURAN BISNES RENCANA WANITA HUJUNG MINGGU BHKARSU

BERITA » Pendidikan elasa, 27 Ogos 2019 | 6:41pm




Naib Canselor I IKM. Prof ir Dr Mobd Hamdi Abd Sbukor (kiri) bersama nenvelidik IMEN. Dr Abdul Rahman Mohamd nada sidang medi khas penyelidikan UKM berjaya menerbit dalam Jurnal Nature Materials di UKM Bangi. - NSTP/Rohanis Shukri

Penyelidik UKM muncul saintis pertama pengarang jurnal Nature Materials Oleh Halina Mohd Noor halina mdnoor@hh.com.m

BANGI: Penyelidik Institut Kejuruteraan Mikro dan Nanoelektrik (IMEN), Universiti

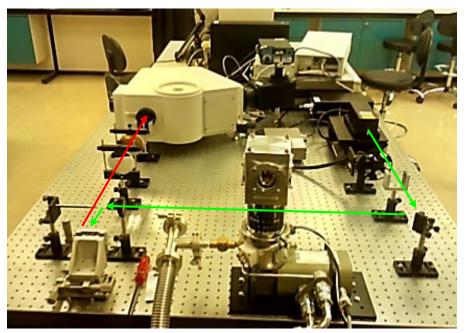
- Research journey
 - PhD study at University of Sheffield, UK
 - Transition from PhD to academia
 - Postdoctoral experience at Rutgers University, US
- Our findings & publishing in Nature Materials
 - Application and demands for hydrogen
 - 2D Transition Metal Dichalcogenides (TMDs) catalyst for hydrogen evolution
 - Key results
- Work Life Balance

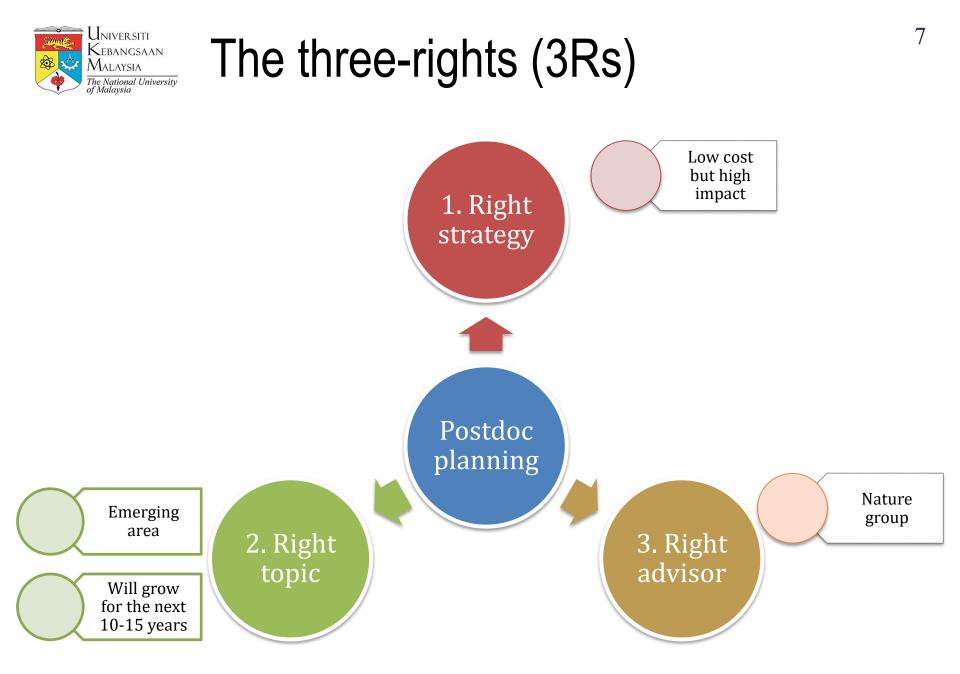
- PhD at University of Sheffield, UK
- Joined a big group (~20 PhD students + 4 postdocs)
- Worked on MBE growth and characterization of III-V semiconductors (GaAs_{1-x}Bi_x)

Material	Thickness (nm)					
GaAs cap	80					
GaAs _{1-x} Bi _x layer	160					
GaAs buffer	80					
S.I (100) GaAs substrate						

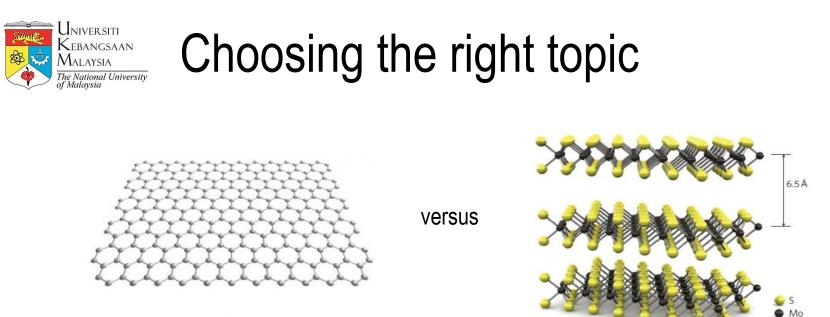
4

- Graduated with 7 journals (5 as the first author)
- 5 Q1s including 3 publications in Applied Physics Letters (Q1, IF 3.5)
- Attended 5 conferences in USA, Japan, German, Finland and UK.




Transitional period

- MBE is expensive growth method
- Peer pressure
- Focusing on material characterizations
- The unexpected inspiration



15 OCTOBER 2019

Graphene

Properties of TMDs, MX_2 , are diverse – insulators (HfS₂), semiconductors (MoS₂), metals (NbS₂, VS₂) etc.

н				MX ₂													He	Table	1 Electron	nic charac	ter of different layered TMDs ²⁵ .
1000					aneitio	n motal											100.00	Group	м	х	Properties
u	Be		M = Transition metal X = Chalcogen								в	с	N	0	F	Ne	4	Ti, Hf, Zr	S, Se, Te	Semiconducting ($E_g = 0.2-2 \text{ eV}$). Diamagnetic.	
Na	Mg	3	4	5	6	7	8	9	10	11	12	AJ	Si	Р	s	СІ	Ar	5	V, Nb, Ta	S, Se, Te	Narrow band metals (ρ -10 ⁻⁴ Ω .cm) or semimetals. Superconducting. Charge density wave (CDW). Paramagnetic, antiferromagnetic, or diamagnetic.
к	Ca	Sc	ті	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	6	Mo, W	S, Se, Te	Sulfides and selenides are semiconducting (E_g -1eV). Tellurides are semimetallic (ρ -10 ⁻³ Ω cm). Diamagnetic.
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe	7	Tc, Re	S, Se, Te	Small-gap semiconductors. Diamagnetic.
Cs	Ba	La-Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	π	РЪ	Ві	Po	At	Rn	10	Pd, Pt	S, Se, Te	Sulfides and selenides are semiconducting $(E_g = 0.4 \text{eV})$ and diamagnetic. Tellurides are metallic and paramagnetic. PdTe ₂ is superconducting.
Fr	Ra	Ac - Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo	p, in-plane	e electrical resist	ivity.	

Choosing the right topic

• Properties of 2D TMDs are diverse. Plenty of things to study!

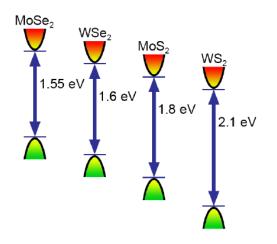
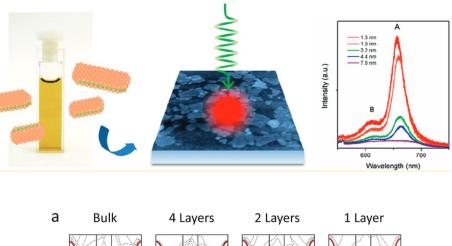
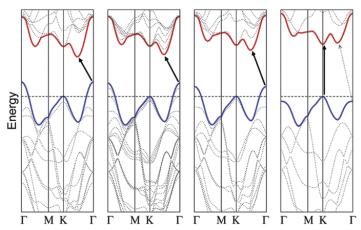
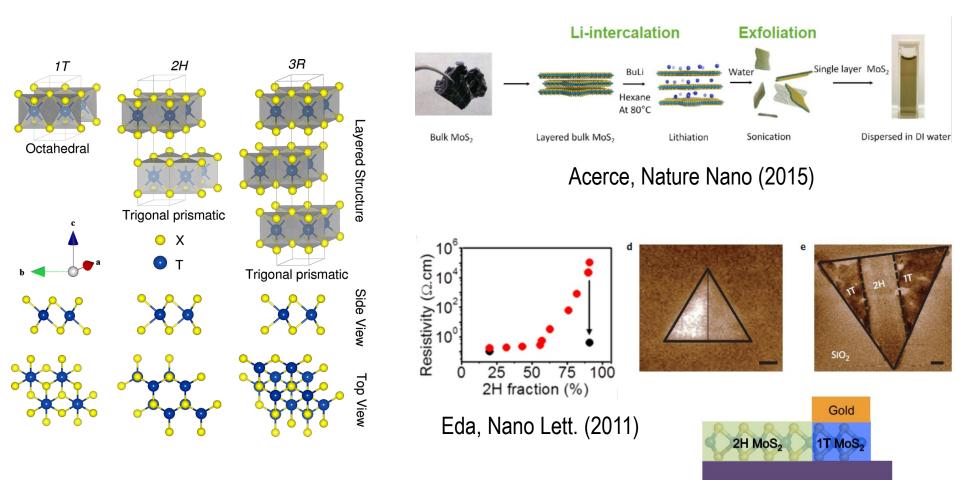




Table 2.1: Band gaps of bulk and single layer LTMD semiconductors

LTMD	Bulk band gap (eV)	Single layer band gap(eV)
MoTe ₂	1.0	1.1
MoSe ₂	1.1	1.5
WSe ₂	1.2	1.6
MoS ₂	1.2	1.8
WS ₂	1.4	2.1
SnS ₂	2.1	2.2

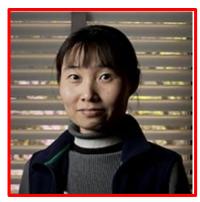


Choosing the right topic

Phase engineering – 2H to 1T MoS2 (looks interesting!)

10

Scouting for potential advisor


• Target to join 'Nature group'

Prof. Ajayan Pulickel Rice Uni, USA Citations: 99,800 H-index: 152

Prof. Manish Chhowalla Rutgers Uni, USA Citations: 48,000 H-index: 86

Prof. Jing Kong MIT, USA Citations: 43,000 H-index: 100

11

Prof. Andras Kis EPFL, Switzerland Citations: 30,600 H-index: 48

Dr. Goki Eda NUS, Singapore Citations: 27,000 H-index: 50

Prof. Jamie Warner Oxford Uni, UK Citations: 9,600 H-index: 49

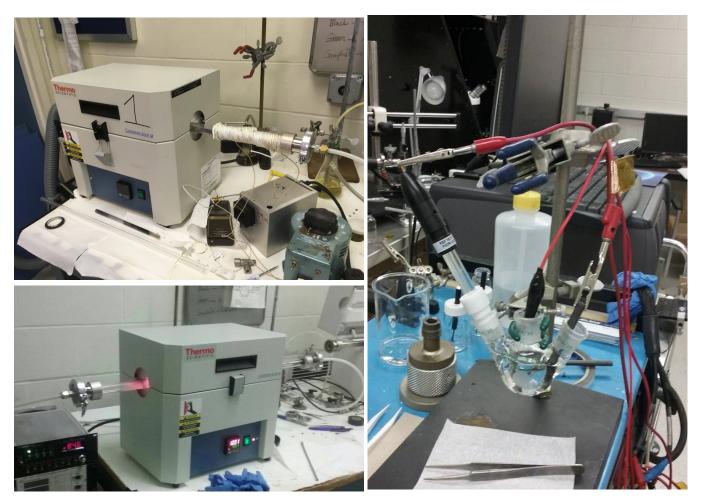
15 OCTOBER 2019

Postdoc at Rutgers

- 2 years in Rutgers from Jan 2016 to 2018
- Members: 5 students + 1 postdoc (+2 PDs & few students)
- Main activities are chemistry related!

WORLD

UNIVERSITY RANKINGS


UTM #217, UKM #160,

RUTGERS #262

Postdoc at Rutgers

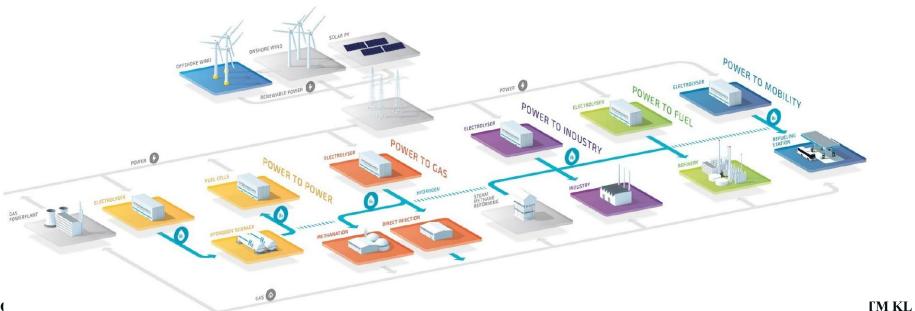
• Equipments and lab facilities

- Research journey
 - PhD study at University of Sheffield, UK
 - Transition from PhD to academia
 - Postdoctoral experience at Rutgers University, US
- Our findings & publishing in Nature Materials
 - Application and demands for hydrogen
 - 2D Transition Metal Dichalcogenides (TMDs) catalyst for hydrogen evolution
 - Key results
- Work Life Balance

Hydrogen market

 In 2017, hydrogen generation market was valued ~\$115 billion and is expected to grow to \$155 billion in 2020.

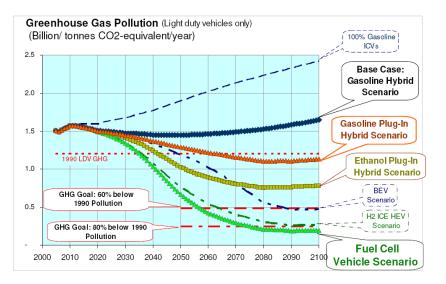
But most (96%) of the hydrogen produced today is not CO_2 -free (from gas, oil, coal)

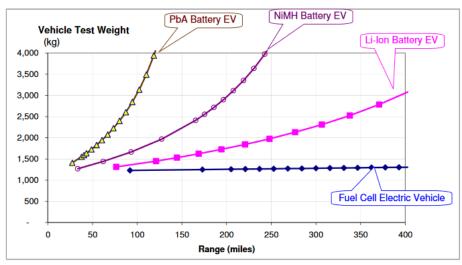

If produced from renewable power via electrolysis, hydrogen is fully renewable and CO₂-free.

Renewable hydrogen has the potential to decarbonize a large range of applications

Applications of hydrogen

Hydrogen vehicles


- Hydrogen as fuel for green vehicles
- Range ~500 km/tank
- Quick refuelling (3-5 mins)


Toyota Mirai

Honda Clarity

Projected greenhouse gas pollution for the U.S. light duty vehicles

Sold in US for \$58,000 or \$349/month lease

Weight of electric vehicles as a function of vehicle range

Source: https://www1.eere.energy.gov/

15 OCTOBER 2019

Hydrogen vehicles

'World's first' hydrogen-powered train enters into service

Anmar Frangoul

Published 5:29 AM ET Mon, 17 Sept 2018 | Updated 11:04 AM ET Mon, 24 Sept 2018

SCNBC

Alstom | R Frampe

https://www.cnbc.com/2018/09/17/worlds-first-hydrogen-powered-train-enters-into-service.html

- 100 km route from Cuxhaven to Buxtehude
- Capacity: 160 passengers
- Top speed: 140 km/h
- Range: 1000 km/tank
- High capital cost but cheaper to run
- Another 14 hydrogen powered trains will be delivered in few years time.

Hydrogen Bus in the UK

Sunline Transit H2 Bus in CA

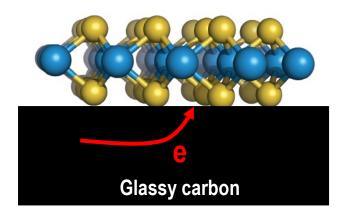

Hydrogen Bus in Norway

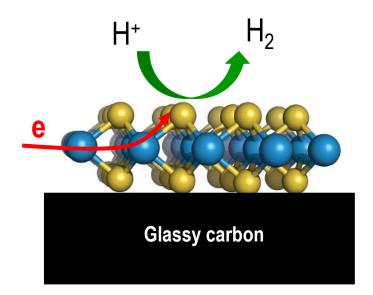
Sarawak hydrogen production plant

- Sarawak has abundant of water and hydroelectric power plant
- RM12 million of investment
- Opened May 2019
- Produces 130 kg of H₂ per day
- Five hydrogen vehicles: 3 buses & 2 cars
- Six 3-in-1 refueling stations by 2020

Basic principles in electrocatalysis

Step 1: Electron injection

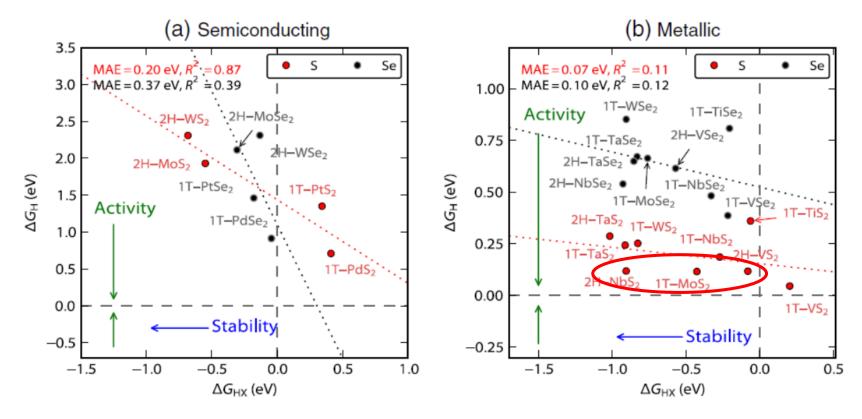

minimum charge transfer resistance, R_{CT}


Step 2: Electron transport to active site

Step 3: Reaction at the active site

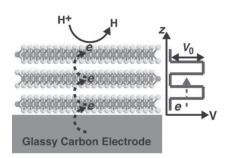
Interaction between catalyst and reactant should neither too weak nor too strong ($\Delta G_H \sim 0 \text{ eV}$)

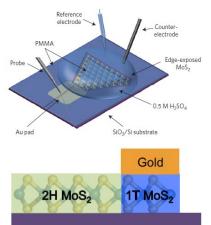
- $H^+ + e^- + * \rightarrow H^*$ (Volmer reaction)
- $2H^* \rightarrow H_2 + 2e^*$ (Tafel) or $H^* + e^- + H^+ \rightarrow H_2 + *$ (Heyrovsky)



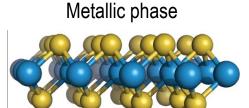
Metallic 2D TMDs

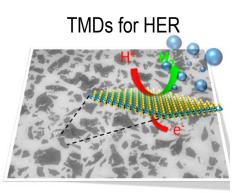
- Interaction between catalyst and reactant should neither too weak nor too strong ($\Delta G_{\rm H} \sim 0 \mbox{ eV}$)
- Tsai *et al.* reported that the basal plane of metallic TM sulfides are the most active. Calculation based on ML TMDs [*Tsai et al., Surf. Sci. 640 133 (2015)*]


Hydrogen adsorption free energy for various TMDs

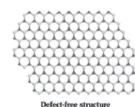

Improvement Strategies

Objectives: Low overpotential, low Tafel slope, high current density

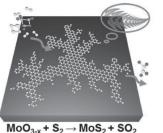

Electron transport

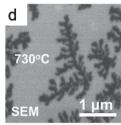


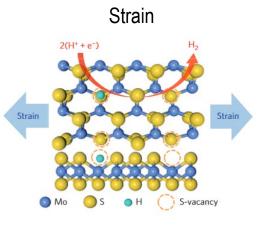
Coupling with substrate



15 OCTOBER 2019

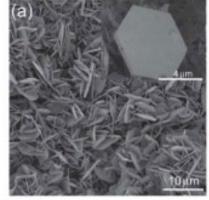

Defects

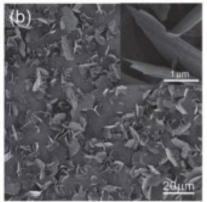




Defect-rich structur

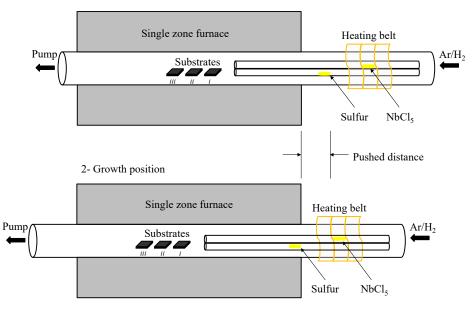
Increasing edges



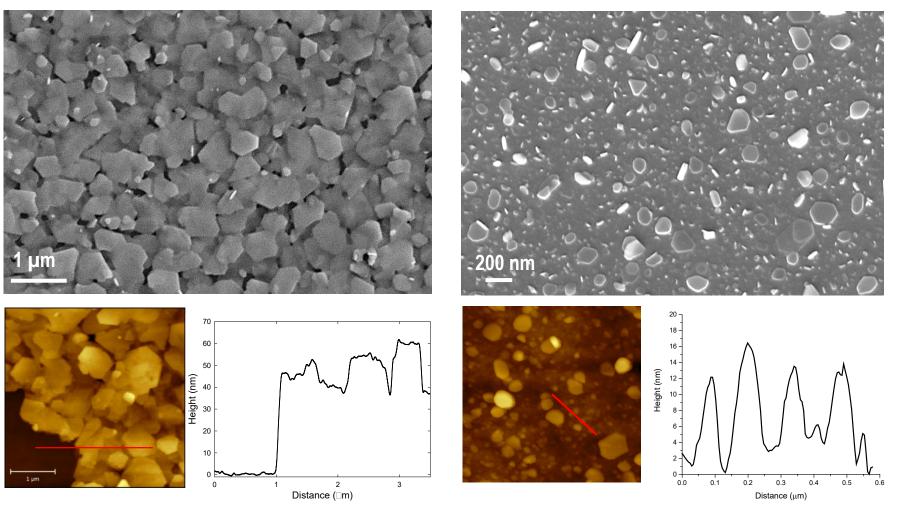


- Majority of previous works reported 3R-NbS₂ with thickness 20-500 nm
- Growth requires lots of sulfur, high temp. and high gas flow

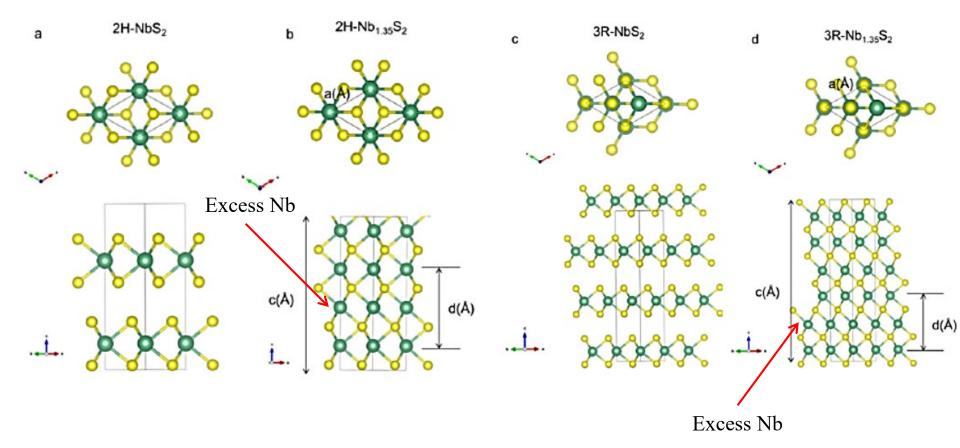
Ref.	NbCl ₅ (g)	S (g)	T _g (°C)	Growth time (mins)	Carrier gas (sccm)
Yanase et al, 2016	0.3	1.5	1000	30-120	ArH, 800-2000
Zhao et al, 2016	-	-	1050	10	Ar, 400
Das et al, 2015	-	8-10	850	30	Ar, 200
Ge et al, 2013	-	-	800	10	Ar, 200


Ge et al, 2013

10 µm

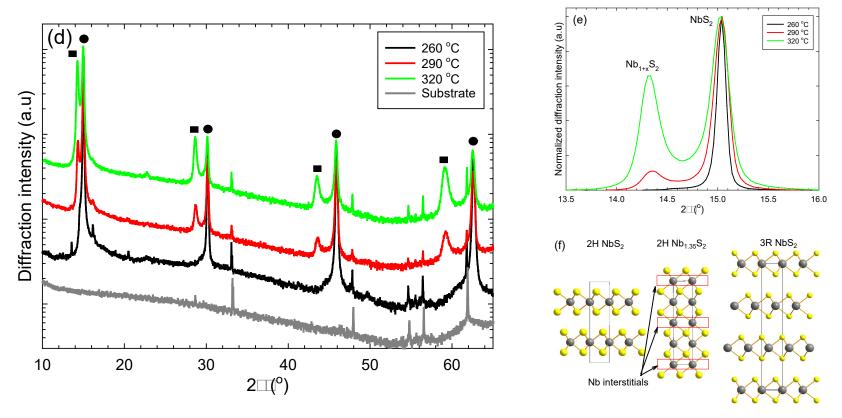

- Growth conditions
 - Precursors: 40 60 mg of NbCl₅ and 140-200 mg of Sulfur
 - Substrate: SiO2/Si, glassy carbon
 - Substrate temp. / growth time : 1000 °C / 8-15 mins
- Heating belt is used to independently control the temp. of NbCl₅.
- Small quartz tubes are also used to avoid cross contamination.

1- Temperature ramping-up position

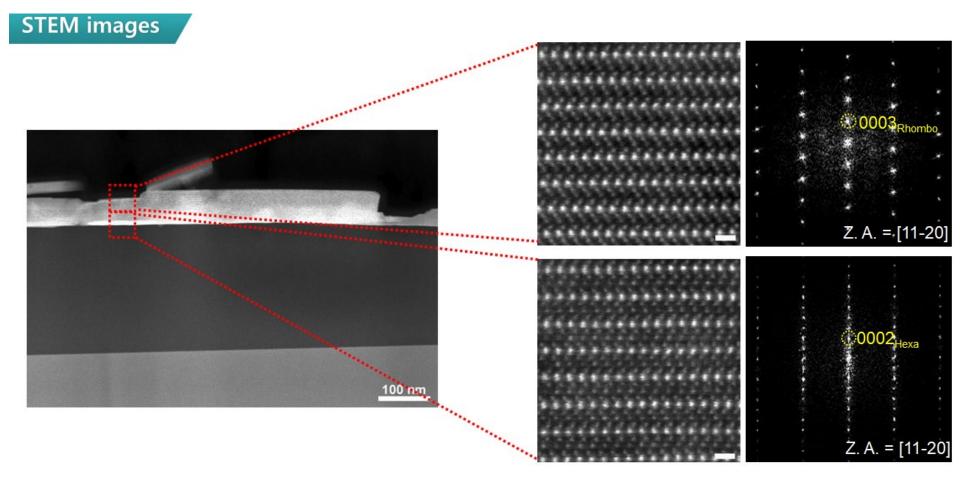

40 mg NbCl5, 15 mins: film with thickness ~50 nm

40 mg, 8 mins growth: small individual flakes with lateral dimension ~200 nm & thickness ~15 nm

Nb Interstitials in NbS₂

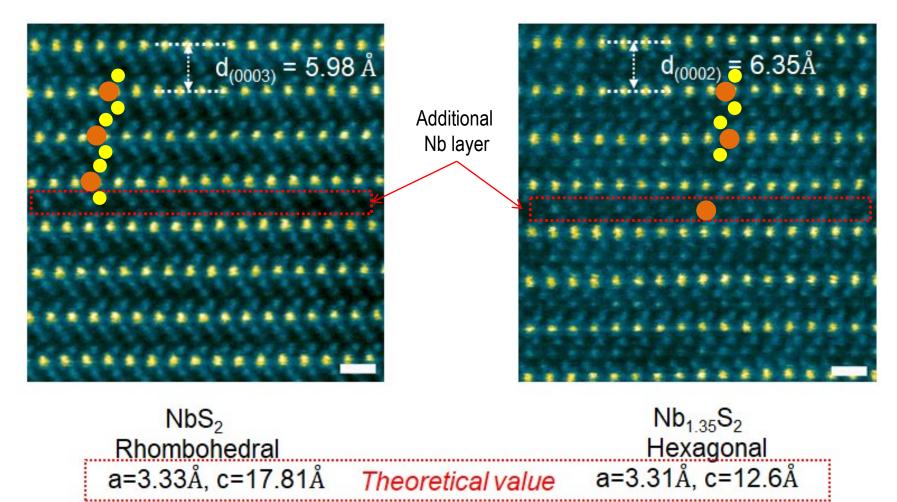

• Nb interstitials may presence in between the layers

Nb Interstitials in thin NbS₂


- NbS₂ samples were grown with different NbCl₅ temperatures (260-320 °C)
- Peaks can be fitted with 1 possibility: Hexagonal Nb_{1.35}S₂, (P63/mmc): PDF#97-004-3699

Nb Interstitials in thin NbS₂

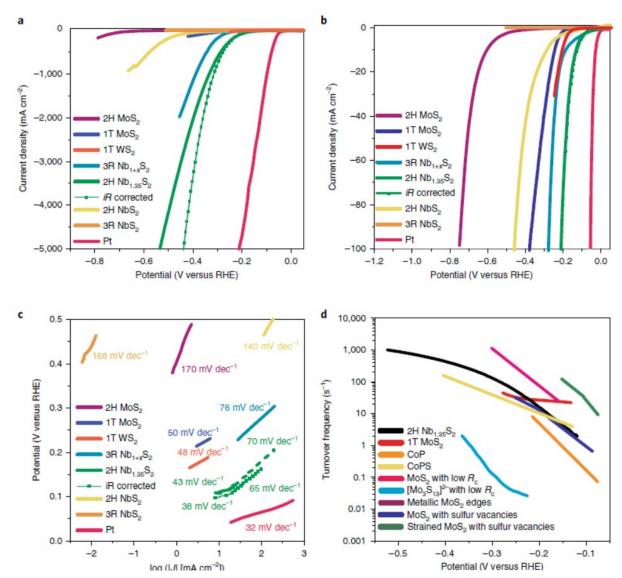
 HR Annular Dark Field (ADF) STEM Images were taken with Titan microscope at 200 kV



28

Nb Interstitials in thin NbS₂

• We can observe additional Nb layers in the structure



15 OCTOBER 2019

29

HER with exceptionally large current density

Polarization curves for various TMDs and Pt measured in 0.5M H_2SO_4 (scan rate of 5 mVs⁻¹)

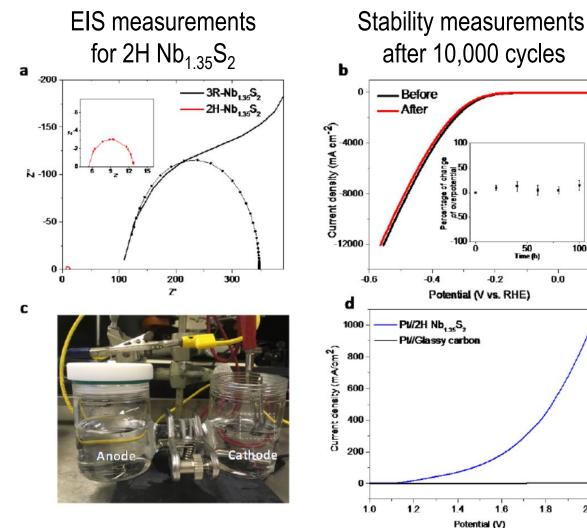
Electrolyzer with high current density

100

change 50

-0.4

overpotential Percentage of 4 of overpoter 0


100

1.4

Potential (V)

1.6

1.8

Proof of concept 2-electrode electrolyzer Polarization curve of water electrolysisfti research week, utm kl

2.0

100

0.0

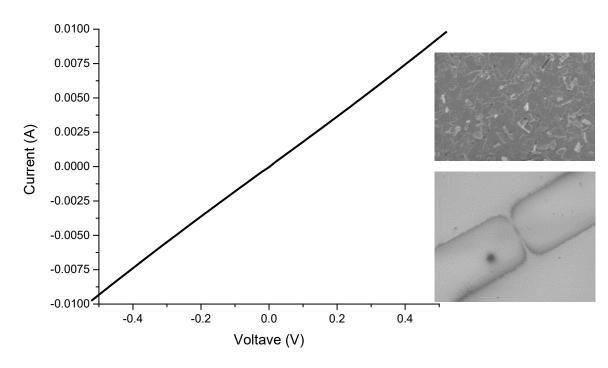
50 Time (h)

-0.2

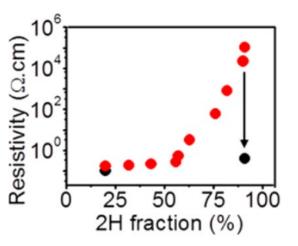
Potential (V vs. RHE)

Universiti

MALAYSIA The National University of Malavsia


8B

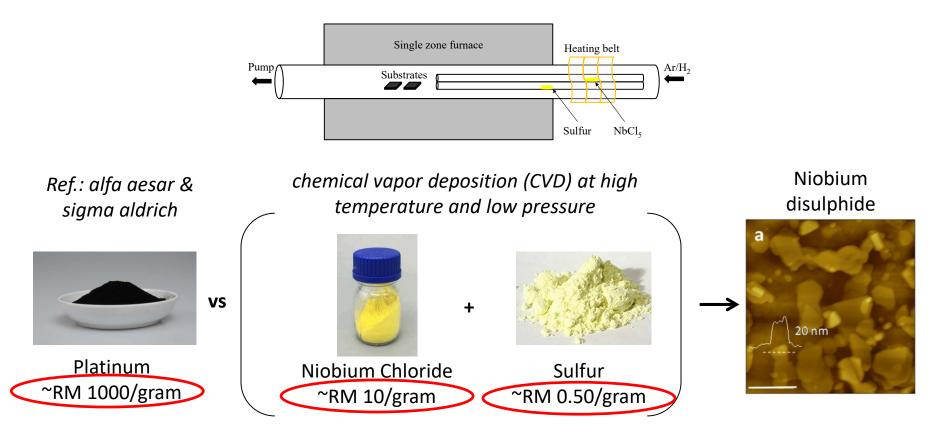
KEBANGSAAN



Electrical Results

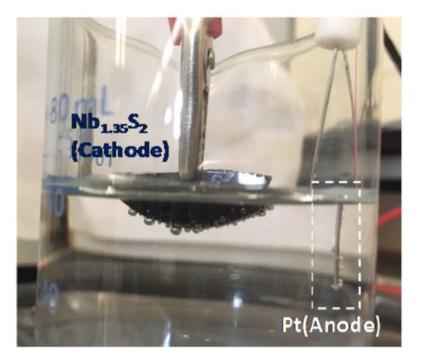
- All devices show linear I-V curves suggesting ohmic contact with metallic channel
- Resistivity (from 15 devices) : 2-6 x $10^{-3} \Omega$ cm
- Large current density : 2-6 x 10⁴ A/cm² at 0.5 V

Resistivity of 1T and 2H MoS2


Voiry et al, Nano Lett 13 (2013) 6222

The reported **niobium disulfide** $(Nb_{1.35}S_2)$ catalyst:

- Low cost
- Performance on-par with platinum



Hydrogen evolution comparison:

- Most of 2D based catalyst: 10 100 mAcm⁻²
- Platinum based catalyst >1000 mAcm⁻²
- Our work (niobium disulfide >5000 mAcm⁻²)
- Highly stable (measurements up to 10,000 cycles)

• Full article can be accessed at: https://www.nature.com/articles/s41563-019-0463-8

mature

LETTERS https://doi.org/10.1038/s41563-019-0463-8

Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution

Jieun Yang^{1,1} Abdul Rahman Mohmad^{2,10}, Yan Wang¹, Raymond Fullon¹, Xiuju Song^{1,3}, Fang Zhao⁴, Ibrahim Bozkurt¹, Mathias Augustin⁵, Elton J. G. Santos^{5*}, Hyeon Suk Shin¹, Wenjing Zhang³, Damien Voiry⁷, Hu Young Jeong^{8*} and Manish Chhowalla^{1,3,9*}

Metallic transition metal dichalcogenides (TMDs)¹⁻⁸ are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases density. Thus, a fine balance must be achieved between reducing the thickness of catalysts and maintaining metallic nature of 2D materials to maximize catalytic performance.

- Research journey
 - PhD study at University of Sheffield, UK
 - Transition from PhD to academia
 - Postdoctoral experience at Rutgers University, US
- Our findings & publishing in Nature Materials
 - Application and demands for hydrogen
 - 2D Transition Metal Dichalcogenides (TMDs) catalyst for hydrogen evolution
 - Key results
- Work Life Balance

Take care of yourself

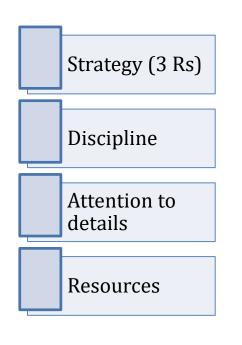
15 OCTOBER 2019

Do charity. Help others

Relief mission to Gaza in 2012

Flood relief mission in Kuantan

Take a break



Recipe for excellence

Tawakkal & prayer

Thank you for your attention. Any questions?

Contact details: Dr. Abdul Rahman Mohmad Email: <u>armohmad@ukm.edu.my</u>

"There's a lot of art in science. It's not just equations and formulas" Alfred Cho

INSTITUTE OF MICROENGINEERING AND NANOELECTRONICS (IMEN)

Vacancy for Master/PhD by research!

- Position is available for Master/PhD candidate to work on the synthesis of 2-dimensional material.
- Candidate should possess Bachelor in Materials Science, Materials Engineering, Chemistry, Physics, Electronics or other related backgrounds.
- Research will be based in IMEN, UKM
- Allowance will be provided

interested? contact me

Dr. Abd Rahman Mohmad, armohmad@ukm.edu.my